
Simulink® PLC Coder™
User's Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® PLC Coder™ User's Guide
© COPYRIGHT 2010–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2010 Online only New for Version 1.0 (Release 2010a)
September 2010 Online only Revised for Version 1.1 (Release 2010b)
April 2011 Online only Revised for Version 1.2 (Release 2011a)
September 2011 Online only Revised for Version 1.2.1 (Release 2011b)
March 2012 Online only Revised for Version 1.3 (Release 2012a)
September 2012 Online only Revised for Version 1.4 (Release 2012b)
March 2013 Online only Revised for Version 1.5 (Release 2013a)
September 2013 Online only Revised for Version 1.6 (Release 2013b)
March 2014 Online only Revised for Version 1.7 (Release 2014a)
October 2014 Online only Revised for Version 1.8 (Release 2014b)
March 2015 Online only Revised for Version 1.9 (Release 2015a)
September 2015 Online only Revised for Version 2.0 (Release 2015b)
March 2016 Online only Revised for Version 2.1 (Release 2016a)
September 2016 Online only Revised for Version 2.2 (Release 2016b)
March 2017 Online only Revised for Version 2.3 (Release 2017a)
September 2017 Online only Revised for Version 2.4 (Release 2017b)
March 2018 Online only Revised for Version 2.5 (Release 2018a)
September 2018 Online only Revised for Version 2.6 (Release 2018b)
March 2019 Online only Revised for Version 3.0 (Release 2019a)
September 2019 Online only Revised for Version 3.1 (Release 2019b)
March 2020 Online only Revised for Version 3.2 (Release 2020a)
September 2020 Online only Revised for Version 3.3 (Release R2020b)
March 2021 Online only Revised for Version 3.4 (Release R2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Getting Started
1

Simulink PLC Coder Product Description . 1-2

Prepare Model for Structured Text Generation . 1-3
Tasking Mode . 1-3
Solvers . 1-3
Configuring Simulink Models for Structured Text Code Generation 1-3
Check System Compatibility for Structured Text Code Generation 1-6

Generate and Examine Structured Text Code . 1-9
Generate Structured Text from the Model Window 1-9
Generate Structured Text with the MATLAB Interface 1-10
View Generated Code . 1-11

Propagate Block Descriptions to Code Comments 1-13

Files Generated by Simulink PLC Coder . 1-14

Specify Custom Names for Generated Files . 1-16

Import Structured Text Code Automatically . 1-17
PLC IDEs for Importing Code Automatically . 1-17
Generate and Automatically Import Structured Text Code 1-17
Troubleshoot Automatic Import Issues . 1-18

Author, Manage, and Execute Simulation-Based Tests of Generated Code
. 1-20

Limitations . 1-21

Simulation and Code Generation of Motion Instructions 1-22
Workflow for Using Motion Instructions in Model 1-22
Simulation of the Motion API Model . 1-24
Structured Text Code Generation . 1-26
Adding Support for Other Motion Instructions . 1-26

Mapping Simulink Semantics to Structured Text
2

Generated Code Structure for Simple Simulink Subsystems 2-2

Generated Code Structure for Reusable Subsystems 2-4

iii

Contents

Generated Code Structure for Triggered Subsystems 2-6

Generated Code Structure for Stateflow Charts . 2-8
Stateflow Chart with Event Based Transitions . 2-8
Stateflow Chart with Absolute Time Temporal Logic 2-9

Generated Code Structure for MATLAB Function Block 2-12

Generated Code Structure for Multirate Models 2-14

Generated Code Structure for Subsystem Mask Parameters 2-16

Global Tunable Parameter Initialization for PC WORX 2-20

Considerations for Nonintrinsic Math Functions 2-21

Generating Ladder Diagram
3

Simulink PLC Coder Ladder Diagram Code Generation 3-2
Ladder Diagram Generation Workflow . 3-4

Prepare Chart for Simulink PLC Coder Ladder Diagram Code Generation
. 3-6

Design PLC Application with Stateflow . 3-6
Create Test Harness for Chart . 3-7

Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart
. 3-9
Stateflow Chart and Ladder Logic Diagram . 3-9
Generate Ladder Diagram from Chart . 3-12
Generate Ladder Diagram Along with Test Bench 3-12

Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram
. 3-14

Import Ladder Diagram XML . 3-14
Verify Ladder Diagram with Test Bench . 3-16

Restrictions on Stateflow Chart for Ladder Diagram Generation 3-18

Supported Features in Ladder Diagram . 3-20
Supported Ladder Elements . 3-20

Import L5X Ladder Files into Simulink . 3-22
Description of the Ladder Diagram . 3-22
Import Ladder Diagram . 3-23

Modeling and Simulation of Ladder Diagrams in Simulink 3-27
Model an AOI Prescan Routine . 3-31
Ladder Model Simulation . 3-32

iv Contents

Generating Ladder Diagram Code from Simulink 3-34

Generating C Code from Simulink Ladder . 3-36

Verify Generated Ladder Diagram Code . 3-38

Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE
Workflow . 3-42

Create Custom Instruction in PLC Ladder Diagram Models 3-44
Create User-Defined Instruction . 3-44
Calculate Square Root by using Custom Instruction Block 3-45

Generating Test Bench Code
4

Test Bench Verification . 4-2

Integrate Generated Code with Custom Code . 4-3

Import and Verify Structured Text Code . 4-4
Generate, Import, and Verify Structured Text . 4-4
Troubleshooting: Long Test Bench Code Generation Time 4-4

Generate Code That Has Multiple Test Benches . 4-6
Troubleshooting: Test Data Exceeds Target Data Size 4-7
Limitations . 4-8

Code Generation Reports
5

Information in Code Generation Reports . 5-2

Create Code Generation Report . 5-4
Generate a Traceability Report . 5-4
Limitation . 5-6

Model Web View in Code Generation Report . 5-7
Model Web Views . 5-7
Browser Requirements for Web Views . 5-7
Generate HTML Code Generation Report with Model Web View 5-7
Model Web View Limitations . 5-9

Generate Static Code Metrics Report . 5-11

Working with the Static Code Metrics Report . 5-14
Workflow for Static Code Metrics Report . 5-14
Report Contents . 5-14
Function Block Information . 5-15

v

View Requirements Links from Generated Code 5-16

Code Traceability
6

Verify Generated Code by Using Code Tracing . 6-2
Traceable Elements . 6-2
Traceability in Generated Code . 6-3
Traceability Tags . 6-5
Operator Traceability . 6-5
Generate a Traceability Report from the Command Line 6-6
Traceability Limitations . 6-6

Trace Simulink Model Elements in Generated Code 6-8
Code-To-Model Traceability . 6-8
Model-to-Code Traceability . 6-9

Trace Stateflow Elements in Generated Code . 6-11
Inline Traceability for Stateflow Elements . 6-11
Trace States and Transitions to Code . 6-12

Working with Tunable Parameters in the Simulink PLC Coder
Environment

7
Block Parameters in Generated Code . 7-2

Control Appearance of Block Parameters in Generated Code 7-4
Configure Tunable Parameters with Simulink.Parameter Objects 7-4
Make Parameters Tunable Using Configuration Parameters Dialog Box . . . 7-6

Controlling Generated Code Partitions
8

Generate Global Variables from Signals in Model 8-2

Control Code Partitions for Subsystem Block . 8-3
Control Code Partitions Using Subsystem Block Parameters 8-3
One Function Block for Atomic Subsystems . 8-5
One Function Block for Virtual Subsystems . 8-5
Multiple Function Blocks for Nonvirtual Subsystems 8-6

Control Code Partitions for MATLAB Functions in Stateflow Charts 8-8

vi Contents

Integrating Externally Defined Identifiers
9

Integrate Externally Defined Identifiers . 9-2

Integrate Custom Function Block in Generated Code 9-3

IDE-Specific Considerations
10

Integrate Generated Code with Siemens IDE Project 10-2
Integrate Generated Code with Siemens SIMATIC STEP 7 Projects 10-2
Integrate Generated Code with Siemens TIA Portal Projects 10-2

Use Internal Signals for Debugging in RSLogix 5000 IDE 10-3

Rockwell Automation RSLogix Requirements . 10-4
Add-On Instruction and Function Blocks . 10-4
Double-Precision Data Types . 10-4
Unsigned Integer Data Types . 10-4
Unsigned Fixed-Point Data Types . 10-4
Enumerated Data Types . 10-4
Reserved Keywords . 10-4
Rockwell Automation IDE selection . 10-5

Siemens IDE Requirements . 10-6
Target PLCs and Supported Data Types . 10-6
Double-Precision Floating-Point Data Types . 10-6
int8 Data Type and Unsigned Integer Types . 10-6
Unsigned Fixed-Point Data Types . 10-7
Enumerated Data Types . 10-7

Selectron CAP1131 IDE Requirements . 10-8
Double-Precision Floating-Point Data Types . 10-8
Enumerated Data Types . 10-8

Supported Simulink and Stateflow Blocks
11

Supported Blocks . 11-2
View Supported Blocks Library . 11-2
Supported Simulink Blocks . 11-2
Supported Stateflow Blocks . 11-9
Blocks with Restricted Support . 11-9

vii

Limitations
12

Structured Text Code Generation Limitations . 12-2
General Limitations . 12-2
Restrictions . 12-2
Negative Zero . 12-3
Divide by Zero . 12-3
Fixed-Point Data Type Multiword Operations . 12-3
Inplace Variables Code Generation . 12-3

Ladder Logic Code Generation Limitations . 12-4
plcladderlib Limitations . 12-4
Ladder Diagram Import Limitations . 12-4
Ladder Diagram Modeling and Simulation Limitations 12-4
Ladder Diagram Code Generation Limitations . 12-4
Ladder Diagram Verification Limitations . 12-4

Configuration Parameters for Simulink PLC Coder Models
13

PLC Coder: General . 13-2
PLC Coder: General Tab Overview . 13-3
Target IDE . 13-3
Show Full Target List . 13-5
Target IDE Path . 13-6
Code Output Directory . 13-7
Generate Testbench for Subsystem . 13-7
Include Testbench Diagnostic Code . 13-8
Generate Functions Instead of Function Block . 13-8
Allow Functions with Zero Inputs . 13-9
Suppress Auto-Generated Data Types . 13-10
Emit Data type Worksheet Tags for PCWorx . 13-10
Aggressively Inline Structured Text Function Calls 13-11
Signal Builder Block Time Range to Generate Multi Testbench 13-11

PLC Coder: Comments . 13-13
Comments Overview . 13-13
Include Comments . 13-13
Include Block Description . 13-14
Simulink Block / Stateflow Object Comments . 13-15
Show Eliminated Blocks . 13-15

PLC Coder: Optimization . 13-16
Optimization Overview . 13-16
Default Parameter Behavior . 13-17
Signal Storage Reuse . 13-18
Remove Code from Floating-Point to Integer Conversions That Wraps Out-

Of-Range Values . 13-18
Generate Reusable Code . 13-19
Inline Named Constants . 13-20
Reuse MATLAB Function Block Variables . 13-21

viii Contents

Loop Unrolling Threshold . 13-21

PLC Coder: Identifiers . 13-23
Identifiers Overview . 13-24
Use Subsystem Instance Name as Function Block Instance Name 13-24
Override Target Default Maximum Identifier Length 13-24
Maximum Identifier Length . 13-25
Override Target Default enum Name Behavior 13-26
Generate enum Cast Function . 13-26
Use the Same Reserved Names as Simulation Target 13-27
Reserved Names . 13-27
Externally Defined Identifiers . 13-28
Preserve Alias Type Names for Data Types . 13-28
Inline Enum Cast Function . 13-29

PLC Coder: Report . 13-31
Report Overview . 13-31
Generate Traceability Report . 13-32
Generate Model Web View . 13-32
Open Report Automatically . 13-33

PLC Coder:Interface . 13-34
Interface Overview . 13-34
Generate Logging Code . 13-35
Keep Top-Level ssmethod Name the Same as the Non-Top Level Name

. 13-35
Remove Top-level Subsystem Ssmethod Type . 13-36
Remove Initialization Statements for Externally Defined State Variables

. 13-36
Absolute-Time Temporal Logic . 13-37

External Mode
14

External Mode Logging . 14-2

Generate Structured Text Code That Has Logging Instrumentation . . . 14-3

Visualize and Monitor Logging Data by using Simulation Data Inspector
. 14-7

Set Up and Download Code to Studio 5000 IDE 14-7
Configure RSLinx OPC Server . 14-8
Stream and Display Live Log Data by Using PLC External Mode Commands

. 14-8

Ladder Diagram Instructions
15

Instructions Supported in Ladder Diagram . 15-2

ix

Ladder Diagram Blocks
16

Ladder Diagram Blocks . 16-2

Fixed Point Code Generation
17

Block Parameters . 17-2

Model Parameters . 17-3

Limitations . 17-4

Generating PLC Code for Multirate Models
18

Multirate Model Requirements for PLC Code Generation 18-2
Model Configuration Parameters . 18-2
Limitations . 18-2

Generating PLC Code for MATLAB Function Block
19

Configuring the rand function for PLC Code generation 19-2

Width block requirements for PLC Code generation 19-3

Workspace Parameter Data Type Limitations . 19-4

Limitations . 19-5

Model Architecture and Design
20

Fixed Point Simulink PLC Coder Structured Text Code Generation 20-2
Block Parameters . 20-2
Model Parameters . 20-3
Limitations . 20-4

x Contents

Generating Simulink PLC Coder Structured Text Code For Multirate
Models . 20-7

Multirate Model Requirements for PLC Code Generation 20-7

MATLAB Function Block Simulink PLC Coder Structured Text Code
Generation . 20-9
Configuring the rand function for PLC Code Generation 20-9
SimulinkWidth Block Requirements for PLC Code generation 20-9
Workspace Parameter Data Type Limitations . 20-9
Limitations . 20-9

PLC Coder Code Deployment
21

Deploy Structured Text . 21-2
Learning Objectives . 21-2
Prerequisites . 21-2
Workflow . 21-2
Importing Generated Structured Text Code Manually 21-2

Deploy Ladder Diagram . 21-5
Learning Objectives . 21-5
Prerequisites . 21-5
Workflow . 21-5
Importing Generated Ladder Diagram Code Manually 21-5

Simulink PLC Coder Structured Text Code Generation For
Simulink Data Dictionary (SLDD)

22
Structured Text Code Generation Support for Simulink Data Dictionary

. 22-2
Limitations . 22-2

Generate Structured Text Code For Simulink Data Dictionary Defined
Model Parameters . 22-3

Learning Objectives . 22-3
Requirements . 22-3
Workflow . 22-3

Simulink PLC Coder Structured Text Code Generation For
Enumerated Data Type

23
Structured Text Code Generation for Enum To Integer Conversion 23-2

xi

IDE Limitations . 23-3

Distributed Code Generation with Simulink PLC Coder
24

Distributed Model Code Generation Options . 24-2

Generated Code Structure for PLC_RemoveSSStep 24-3

Generated Code Structure for PLC_PreventExternalVarInitialization . . 24-5

PLC_RemoveSSStep for Distributed Code Generation 24-7

Structured Text Code Generation for Subsystem Reference Blocks . . . 24-10

Distributed Code Generation Limitations . 24-12

Examples Book
25

Generate Structured Text Code for a Simple Simulink® Subsystem . . . 25-3

Generating Structured Text for a Simple Simulink® Subsystem without
Internal State . 25-8

Generating Structured Text for a Hierarchical Simulink® Subsystem with
Virtual Subsystems . 25-9

Generating Structured Text for a Hierarchical Simulink® Subsystem
. 25-11

Generating Structured Text for a Reusable Simulink® Subsystem . . . 25-13

Generating Structured Text for a Simple Simulink® Subsystem Using
Multirate . 25-15

Simulate and Generate Structured Text Code for a Stateflow® Chart . 25-17

Generating Structured Text for a MATLAB® Block 25-20

Generating Structured Text for a Feedforward PID Controller 25-21

Mapping Tunable Parameters to Structured Text 25-23

Simulation and Code Generation For Tunable Parameters 25-25

Simulate and Generate Code for Speed Cruise Control System 25-29

xii Contents

Variable Step Speed Cruise Control System . 25-31

Simulate and Generate Code for Airport Conveyor Belt Control System
. 25-33

Generating Structured Text for Simulink® Model with Fixed-Point Data
Types . 25-34

Generating Structured Text for Stateflow® Chart with Absolute Time
Temporal Logic . 25-36

Integrating User Defined Function Blocks, Data Types, and Global
Variables into Generated Structured Text . 25-38

Simulating and Generating Structured Text Code for Rockwell Motion
Instructions . 25-40

Tank Control Simulation and Code Generation by Using Ladder Logic
. 25-42

Using Timers in Ladder Logic . 25-45

Temperature Control Simulation and Code Generation Using Ladder
Logic . 25-48

Elevator Control Simulation and Code Generation Using Ladder Logic
. 25-52

Structured Text Code Generation for Simulink Data Dictionary 25-55

Structured Text Code Generation for Subsystem Reference Blocks . . . 25-56

PLC_RemoveSSStep for Distributed Code Generation 25-58

Structured Text Code Generation for Enum To Integer Conversion . . . 25-61

Structured Text Code Generation for Integer To Enum Conversion . . . 25-62

PLC_PreventExternalVarInitialization for Distributed Code Generation
. 25-63

Simulation and Structured Text Generation For MPC Controller Block
. 25-65

View Requirement Links from Generated Code 25-70

Run-Time Data Collection by Using External Mode Logging 25-73

Verify Generated Code by Using Cosimulation . 25-77

xiii

PLC Coder Model Advisor
26

PLC Coder Checks in Model Advisor Overview . 26-2

Industry standard checks overview . 26-3

Define names to avoid . 26-4
Description . 26-4
Results and Recommended Actions . 26-4

Define use of case (capitals) . 26-5
Description . 26-5
Input Parameters . 26-5
Results and Recommended Actions . 26-5

Define maximum variable name length . 26-6
Description . 26-6
Input Parameters . 26-6
Results and Recommended Actions . 26-6

Comments must describe purpose of component 26-7
Description . 26-7
Results and Recommended Actions . 26-7

Avoid nested comments . 26-8
Description . 26-8
Results and Recommended Actions . 26-8

Define maximum number of input/output/in-out variables of a Program
Organization Unit (POU) . 26-9

Description . 26-9
Input Parameters . 26-9
Results and Recommended Actions . 26-9

Define type prefixes for variables (if used) . 26-10
Description . 26-10
Results and Recommended Actions . 26-10

Using the PLC Coder Model Advisor
27

Run Simulink PLC Coder Model Advisor Checks 27-2
Open the Model Advisor . 27-2
Run Checks in the Model Advisor . 27-2
Display Check Results in the Model Advisor Report 27-3
Fix Warnings or Failures . 27-4
Save and Restore Model Advisor State . 27-4

xiv Contents

Custom Keyword List
28

Create Custom Target-Based Keyword List . 28-2
Custom Keyword File Template . 28-2
Custom Keyword File Usage Workflow . 28-19
Verify Custom Keyword Name Changes in the Generated Code 28-20

Plugin Based Targets
29

Create Custom Target IDE for Code Generation . 29-2
Plugin-Based Code Generation Workflow . 29-2
Plugin Options . 29-5
Generate Code by Using Plugin-Based Target IDE 29-15

xv

Getting Started

• “Simulink PLC Coder Product Description” on page 1-2
• “Prepare Model for Structured Text Generation” on page 1-3
• “Generate and Examine Structured Text Code” on page 1-9
• “Propagate Block Descriptions to Code Comments” on page 1-13
• “Files Generated by Simulink PLC Coder” on page 1-14
• “Specify Custom Names for Generated Files” on page 1-16
• “Import Structured Text Code Automatically” on page 1-17
• “Author, Manage, and Execute Simulation-Based Tests of Generated Code” on page 1-20
• “Simulation and Code Generation of Motion Instructions” on page 1-22

1

Simulink PLC Coder Product Description
Generate IEC 61131-3 Structured Text and Ladder Diagrams for PLCs and PACs

Simulink PLC Coder generates hardware-independent IEC 61131-3 Structured Text and Ladder
Diagrams from Simulink models, Stateflow® charts, and MATLAB® functions. The Structured Text and
Ladder Diagrams are generated in PLCopen XML and other file formats supported by widely used
integrated development environments (IDEs) including 3S-Smart Software Solutions CODESYS,
Rockwell Automation® Studio 5000, Siemens® TIA Portal, and OMRON® Sysmac® Studio. As a result,
you can compile and deploy your application to numerous programmable logic controller (PLC) and
programmable automation controller (PAC) devices.

Simulink PLC Coder generates test benches that help you verify the Structured Text and Ladder
Diagrams using PLC and PAC IDEs and simulation tools. It also provides code generation reports with
static code metrics and bidirectional traceability between model and code. Support for industry
standards is available through IEC Certification Kit (for IEC 61508 and IEC 61511).

1 Getting Started

1-2

https://www.mathworks.com/products/iec-61508.html

Prepare Model for Structured Text Generation
In this section...
“Tasking Mode” on page 1-3
“Solvers” on page 1-3
“Configuring Simulink Models for Structured Text Code Generation” on page 1-3
“Check System Compatibility for Structured Text Code Generation” on page 1-6

Tasking Mode
This step is only required if your Simulink model contains multi-rate signals. If your Simulink model
does not contain multi-rate signals, you may proceed to solver selection.

Simulink PLC Coder only generates code for single-tasking subsystems. For multi-rate subsystems,
you must first explicitly set the tasking mode to single-tasking before selecting a solver. In the model
configuration, on the Solver pane, clear the check box for Treat each discrete rate as a separate
task.

Solvers
Choose a solver for your Simulink PLC Coder model.

Model Solver Setting
Variable-step Use a continuous solver. Configure a fixed sample time for the subsystem for

which you generate code.
Fixed-step Use a discrete fixed-step solver.

Configuring Simulink Models for Structured Text Code Generation
You must already have a model for which you want to generate and import code to a PLC IDE. Before
you use this model, perform the following steps.

1 In the Command Window, open your model.

 Prepare Model for Structured Text Generation

1-3

2 Configure the model to use the fixed-step discrete solver. Click the solver link in the lower-right
corner. The Solver information pane opens. In the pane, click the View solver settings button
to open the Solver pane of the model configuration parameters. Under the Solver selection, set
Type to Fixed-step and Solver to discrete (no continuous states).

If your model uses a continuous solver, has a subsystem, configure a fixed sample time for the
subsystem for which you generate code.

3 Save this model as plcdemo_simple_subsystem1.
4 Create a subsystem containing the components for which you want to generate Structured Text

code.

Optionally, rename In1 and Out1 to U and Y respectively. This operation results in a subsystem
like the following figure:

1 Getting Started

1-4

5 Save the model with the new subsystem.
6 In the top-level model, right-click the Subsystem block and select Block Parameters

(Subsystem).
7 In the resulting block dialog box, select Treat as atomic unit.

8 Click OK.
9 Simulate your model.
10 Save your model. In later procedures, you can use either this model, or the

plcdemo_simple_subsystem model that comes with your software.

You are now ready to:

 Prepare Model for Structured Text Generation

1-5

• Set up your subsystem to generate Structured Text code. See “Check System Compatibility for
Structured Text Code Generation” on page 1-6.

• Generate Structured Text code for your IDE. See “Generate and Examine Structured Text Code”
on page 1-9.

Check System Compatibility for Structured Text Code Generation
You must already have a model that you have configured to work with the Simulink PLC Coder
software.

1 In your model, navigate to the subsystem for which you want to generate code.
2 Right-click that Subsystem block and select PLC Code > Check Subsystem Compatibility.

The coder checks whether your model satisfies the Simulink PLC Coder criteria. When the
checking is complete, a View diagnostics hyperlink appears at the bottom of the model window.
Click this hyperlink to open the Diagnostic Viewer window.

If the subsystem is not atomic, right-click the Subsystem block and select PLC Code, which
prompts Enable “Treat as atomic unit” to generate code.

1 Getting Started

1-6

This command opens the block parameter dialog box. Select Treat as atomic unit.

 Prepare Model for Structured Text Generation

1-7

You are now ready to generate Structured Text code for your IDE. See “Generate and Examine
Structured Text Code” on page 1-9.

1 Getting Started

1-8

Generate and Examine Structured Text Code
In this section...
“Generate Structured Text from the Model Window” on page 1-9
“Generate Structured Text with the MATLAB Interface” on page 1-10
“View Generated Code” on page 1-11

Generate Structured Text from the Model Window
You must already have set up your environment and Simulink model to use the Simulink PLC Coder
software to generate Structured Text code. If you have not yet done so, see “Prepare Model for
Structured Text Generation” on page 1-3.

1 If you do not have the plcdemo_simple_subsystem model open, open it now.
2 Open the PLC Coder app. Click PLC Code tab.
3 Click Settings.

The Configuration Parameters dialog box is displayed.

4 On the PLC Code Generation pane, select an option from the Target IDE list, for example, 3S
CoDeSys 2.3.

 Generate and Examine Structured Text Code

1-9

The default Target IDE list displays the full set of supported IDEs. To see a reduced subset of the
target IDEs supported by Simulink PLC Coder, disable the option Show full target list. To
customize this list, use the plccoderpref function.

5 Click OK.
6 Click Generate PLC Code.

This button:

• Generates Structured Text code (same as the PLC Code > Generate Code for Subsystem
option)

• Stores generated code in model_name.exp (for example,
plcdemo_simple_subsystem.exp)

When code generation is complete, a View diagnostics hyperlink appears at the bottom of the
model window. Click this hyperlink to open the Diagnostic Viewer window.

This window has links that you can click to open the associated files. For more information, see
“Files Generated by Simulink PLC Coder” on page 1-14.

Generate Structured Text with the MATLAB Interface
You can generate Structured Text code for a subsystem in the Command Window with the
plcgeneratecode function. You must have already configured the parameters for the model or,
alternatively, you can use the default settings.

For example, to generate code from the SimpleSubsystem subsystem in the
plcdemo_simple_subsystem model:

1 Open the plcdemo_simple_subsystem model:

plcdemo_simple_subsystem
2 Open the Configuration Parameters dialog box using the plcopenconfigset function:

plcopenconfigset('plcdemo_simple_subsystem/SimpleSubsystem')

1 Getting Started

1-10

3 Select a target IDE.
4 Configure the subsystem as described in “Prepare Model for Structured Text Generation” on

page 1-3.
5 Generate code for the subsystem:

generatedfiles = plcgeneratecode('plcdemo_simple_subsystem/SimpleSubsystem')

When using plcgeneratecode for code generation, all diagnostic messages are printed to the
MATLAB command window.

View Generated Code
After generating the code, you can view it in the MATLAB Editor. For a description of how the
generated code for the Simulink components map to Structured Text components, see “PLC Code
Generation Basics”. In addition, note the following:

• Matrix data types: The coder converts matrix data types to single-dimensional vectors (column-
major) in the generated Structured Text.

• Generated code header: If your model has author names, creation dates, and model descriptions,
the generated code contains these items in the header comments. The header also lists
fundamental sample times for the model and the subsystem block for which you generate code.

• Code comments: You can choose to propagate block descriptions to comments in generated code.
See “Propagate Block Descriptions to Code Comments” on page 1-13.

The figure illustrates generated code for the CoDeSys Version 2.3 PLC IDE. Generated code for other
platforms, such as Rockwell Automation RSLogix™ 5000, is in XML or other format and looks
different.

 Generate and Examine Structured Text Code

1-11

If you are confident that the generated Structured Text is good, optionally change your workflow to
automatically generate and import code to the target IDE. For more information, see “Import
Structured Text Code Automatically” on page 1-17.

1 Getting Started

1-12

Propagate Block Descriptions to Code Comments
You can propagate block descriptions from the model to comments in your generated code.

For specific IDEs, you can propagate the block descriptions into specific XML tags in the generated
code. The IDEs use the tags to create a readable description of the function blocks in the IDE.

• For Rockwell Automation RSLogix 5000 AOI/routine target IDEs, the coder propagates block
descriptions from the model into the L5X AdditionalHelpText XML tag. The IDE can then
import the tag as part of AOI and routine definition in the generated code.

• For CoDeSys 3.5 IDE, the coder propagates block descriptions from the model into the
documentation XML tag. When you import the generated code into the CoDeSys 3.5 IDE, the
IDE parses the content of this tag and provides readable descriptions of the function blocks in
your code.

To propagate block descriptions to comments:

1 Enter a description for the block.

a Right-click the block for which you want to write a description and select Properties.
b On the General tab, enter a block description.

2 Before code generation, specify that block descriptions must propagate to code comments.

a Right-click the subsystem for which you are generating code and select PLC Code >
Options.

b Select the option Include block description on page 13-14.

Your block description appears as comments in the generated code.

 Propagate Block Descriptions to Code Comments

1-13

Files Generated by Simulink PLC Coder
The Simulink PLC Coder software generates Structured Text code and stores it according to the
target IDE platform. These platform-specific paths are default locations for the generated code. To
customize generated file names, see “Specify Custom Names for Generated Files” on page 1-16.

Platform Generated Files
3S-Smart
Software
Solutions
CoDeSys 2.3

current_folder\plcsrc\model_name.exp — Structured Text file for importing to the
target IDE.

3S-Smart
Software
Solutions
CoDeSys 3.3

current_folder\plcsrc\model_name.xml — Structured Text file for importing to the
target IDE.

3S-Smart
Software
Solutions
CoDeSys 3.5

current_folder\plcsrc\model_name.xml — Structured Text file for importing to the
target IDE.

B&R Automation
Studio® IDE

The following files in current_folder\plcsrc\model_name — Files for importing to the
target IDE:

• Package.pkg — (If test bench is generated) Top-level package file for function blocks
library and test bench main program in XML format.

In the main folder (if test bench is generated):

• IEC.prg — Test bench main program definition file in XML format.
• mainInit.st — Text file. Test bench init program file in Structured Text.
• mainCyclic.st — Text file. Test bench cyclic program file in Structured Text.
• mainExit.st — Text file. Test bench exit program file in Structured Text.
• main.typ — Text file. Main program type definitions file in Structured Text.
• main.var — Text file. Main program variable definitions file in Structured Text.

Beckhoff®

TwinCAT® 2.11
current_folder\plcsrc\model_name.exp — Structured Text file for importing to the
target IDE.

Beckhoff
TwinCAT 3

current_folder\plcsrc\model_name.xml — Structured Text file for importing to the
target IDE.

KW-Software
MULTIPROG® 5.0

current_folder\plcsrc\model_name.xml — Structured Text file, in XML format, for
importing to the target IDE.

Phoenix Contact®

PC WORX™ 6.0
current_folder\plcsrc\model_name.xml — Structured Text file, in XML format, for
importing to the target IDE.

Rockwell
Automation
Studio 5000 IDE:
AOI

current_folder\plcsrc\model_name.L5X — (If test bench is generated) Structured
Text file for importing to the target IDE using Add-On Instruction (AOI) constructs. This file
is in XML format and contains the generated Structured Text code for your model.

1 Getting Started

1-14

Platform Generated Files
Rockwell
Automation
Studio 5000 IDE:
Routine

current_folder\plcsrc\model_name.L5X — (If test bench is generated) Structured
Text file for importing to the target IDE using routine constructs. This file is in XML format
and contains the generated Structured Text code for your model.

In current_folder\plcsrc\model_name (if test bench is not generated), the following
files are generated:

• subsystem_block_name.L5X — Structured Text file in XML format. Contains program
tag and UDT type definitions and the routine code for the top-level subsystem block.

• routine_name.L5X — Structured Text files in XML format. Contains routine code for
other subsystem blocks.

Rockwell
Automation
RSLogix 5000
IDE: AOI

current_folder\plcsrc\model_name.L5X — (If test bench is generated) Structured
Text file for importing to the target IDE using Add-On Instruction (AOI) constructs. This file
is in XML format and contains the generated Structured Text code for your model.

Rockwell
Automation
RSLogix 5000
IDE: Routine

current_folder\plcsrc\model_name.L5X — (If test bench is generated) Structured
Text file for importing to the target IDE using routine constructs. This file is in XML format
and contains the generated Structured Text code for your model.

In current_folder\plcsrc\model_name (if test bench is not generated), the following
files are generated:

• subsystem_block_name.L5X — Structured Text file in XML format. Contains program
tag and UDT type definitions and the routine code for the top-level subsystem block.

• routine_name.L5X — Structured Text files in XML format. Contains routine code for
other subsystem blocks.

Siemens
SIMATIC® STEP®

7 IDE

current_folder\plcsrc\model_name\model_name.scl — Structured Text file for
importing to the target IDE.

current_folder\plcsrc\model_name\model_name.asc — (If test bench is generated)
Text file. Structured Text file and symbol table for generated test bench code.

Siemens TIA
Portal IDE

current_folder\plcsrc\model_name\model_name.scl — Structured Text file for
importing to the target IDE.

Generic current_folder\plcsrc\model_name.st — Pure Structured Text file. If your target
IDE is not available for the Simulink PLC Coder product, consider generating and importing
a generic Structured Text file.

PLCopen XML current_folder\plcsrc\model_name.xml — Structured Text file formatted using the
PLCopen XML standard. If your target IDE is not available for the Simulink PLC Coder
product, but uses a format like this standard, consider generating and importing a PLCopen
XML Structured Text file.

Rexroth
IndraWorks

current_folder\plcsrc\model_name.xml — Structured Text file for importing to the
target IDE.

OMRON Sysmac
Studio

current_folder\plcsrc\model_name.xml — Structured Text file for importing to the
target IDE.

 Files Generated by Simulink PLC Coder

1-15

Specify Custom Names for Generated Files
The Simulink PLC Coder software generates Structured Text code and stores it according to the
target IDE platform. These platform-specific paths are default locations for the generated code. For
more information, see “Files Generated by Simulink PLC Coder” on page 1-14.

To specify a different name for the generated files, set the Function name options parameter in the
Subsystem block:

1 Right-click the Subsystem block for which you want to generate code and select Subsystem
Parameters.

2 In the Main tab, select the Treat as atomic unit check box.
3 Click the Code Generation tab.
4 From the Function Packaging parameter list, select Reusable Function.

These options enable the Function name options and File name options parameters.
5 Select the option that you want to use for generating the file name.

Function name options Generated File Name
Auto Default. Uses the model name, as listed in

“Prepare Model for Structured Text
Generation” on page 1-3, for example,
plcdemo_simple_subsystem.

Use subsystem name Uses the subsystem name, for example,
SimpleSubsystem.

User specified Uses the custom name that you specify in the
Function name parameter, for example,
SimpleSubsystem.

1 Getting Started

1-16

Import Structured Text Code Automatically

In this section...
“PLC IDEs for Importing Code Automatically” on page 1-17
“Generate and Automatically Import Structured Text Code” on page 1-17
“Troubleshoot Automatic Import Issues” on page 1-18

PLC IDEs for Importing Code Automatically
You can generate and automatically import structured text code to the 3S-Smart Software Solutions
CoDeSys Version 2.3 target PLC IDE.

Generate and Automatically Import Structured Text Code
You can generate and automatically import structured text code. Before you start:

• In the target IDE, save your current project.
• Close open projects.
• Close the target IDE and target IDE-related windows.

Note While the automatic import process is in progress, do not use your mouse or keyboard to avoid
disrupting the process. When the process is complete, you can resume normal operations.

You must have already installed your target PLC IDE in a default location. The target IDE must use
the CoDeSys V2.3 IDE. If you installed the target PLC IDE in a nondefault location, open the
Configuration Parameters dialog box. In the PLC Coder node, set the Target IDE Path parameter to
the installation folder of your PLC IDE. See “Target IDE Path” on page 13-6.

1 If it is not already started, open the Command Window.
2 Open the plcdemo_simple_subsystem model.
3 Select the Subsystem block. Open the PLC Coder app.
4 Open the PLC Code tab , click Settings > Import Code into IDE.
5 Open the PLC Code tab and click Generate PLC Code.
6 The software:

a Generates the code.
b Starts the target IDE interface.
c Creates a project.
d Imports the generated code to the target IDE.

If you want to generate, import, and verify the structured text code, see “Import and Verify
Structured Text Code” on page 4-4.

 Import Structured Text Code Automatically

1-17

Troubleshoot Automatic Import Issues
Following are guidelines, hints, and tips for questions or issues you might have while using the
automatic import capability of the Simulink PLC Coder product.

Supported Target IDEs

The Simulink PLC Coder software supports only the 3S-Smart Software Solutions CoDeSys Version
2.3 target IDE for automatic code import and verification.

Note Some antivirus softwares falsely identifies the executables that implement the automatic
import feature as malware. You can ignore this false identification. For more information, see “Issues
with Anti-Virus Software”.

Target IDEs Not Supported For Automatic Import

The following target IDEs do not support automatic import. For these target IDEs, the Import Code
into IDE and Verify Code in IDE are disabled.

• 3S-Smart Software Solutions CoDeSys Version 3.3
• 3S-Smart Software Solutions CoDeSys Version 3.5
• B&R Automation Studio IDE
• Beckhoff TwinCAT 2.11, 3
• Generic
• PLCopen
• Rockwell Automation Studio 5000 Logix Designer (both routine and AOI constructs)
• PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0 or 5.50 (English)
• Phoenix Contact PC WORX 6.0 (English)
• Rockwell Automation RSLogix 5000 Series Version 17, 18, 19 (English)

For the Rockwell Automation RSLogix routine format, you must generate test bench code for
automatic import and verification.

• Siemens SIMATIC STEP 7 Version 5.4 (English and German)

Possible Automatic Import Issues

When the Simulink PLC Coder software fails to finish automatically importing the generated code for
the target IDE, it reports an issue in a message dialog box. To remedy the issue, try the following
actions:

• Check that the coder supports the target IDE version and language setting combination.
• Check that you have specified the target IDE path in the subsystem Configuration Parameters

dialog box.
• Close currently open projects in the target IDE, close the target IDE completely, and try again.
• Some target IDEs can have issues supporting the large data sets the coder test bench generates.

In these cases, try to shorten the simulation cycles to reduce the data set size, then try the
automatic import again.

1 Getting Started

1-18

• Other applications can interfere with automatic importing to a target IDE. Close other unrelated
applications on the system and try the automatic import again.

 Import Structured Text Code Automatically

1-19

Author, Manage, and Execute Simulation-Based Tests of
Generated Code

Author, manage, and execute simulation-based tests of the generated code, by using Simulink Test™
with Simulink PLC Coder.

1 If you do not have the plcdemo_simple_subsystem model open, open it.
2 Create a signal build test harness for the subsystem. To create a test harness for a subsystem,

select the subsystem, right-click, and from the context menu, select Test Harness > Create for
<subsystem name>. Set test harness properties through the Create Test Harness dialog box.

3 Open the PLC Coder app. Click the PLC Code tab.
4 Click Settings.

1 Getting Started

1-20

5 In the Configuration Parameters dialog box, on the PLC Code Generation pane, select a target
and click the Generate testbench for subsystem check box.

6 Click OK.
7 Select the Test Harness Window subsystem, click the PLC Code tab and click Generate PLC

Code. The generated code contains multiple test benches from the signal builder. You can run
this code in the PLC emulator to make sure it matches your model simulation.

Limitations
• If you use anything other than a signal builder block in the test harness, you must create a top-

level atomic subsystem in the test harness that contains the subsystem under test and the testing
blocks (for example, test sequence block) and generate code for this subsystem.

• Simulink PLC Coder does not support the verify keyword in the test sequence block
• Simulink PLC Coder supports the duration keyword in the test sequence block but it requires

that you run the generated code with the same sample rate as in the Simulink model.

 Author, Manage, and Execute Simulation-Based Tests of Generated Code

1-21

Simulation and Code Generation of Motion Instructions
The Simulink PLC Coder software supports a workflow for the behavioral simulation and structured
text code generation for the Rockwell Automation RSLogix motion control instructions.

Workflow for Using Motion Instructions in Model
This workflow uses the “Simulating and Generating Structured Text Code for Rockwell Motion
Instructions” on page 25-40 example in the plccoderdemos folder. This example provides a
template that you can use with motion instructions. It contains the following files:

Name Description
MotionControllerExample.slx Simulink model containing an example Stateflow chart for

modeling motion instructions.
DriveLibrary.slx Simulink library with a Stateflow chart that is used for

modeling a real world drive (axis) with trajectories, delays,
and other parameters.

MotionTypesForSim.mat MAT-file containing the bus data types for the
AXIS_SERVO_DRIVE and MOTION_INSTRUCTION. The
MotioncontrollerExample.slx model loads the content
of the MAT-file into the workspace. If you are creating a new
model you must load this MAT-file for simulation and code
generation.

Trajectory.m MATLAB class file for implementing trapezoidal velocity
profile. This is used to simulate the behavior of the Motion
Axis Move (MAM) command.

MotionApiStubs.slx Supporting file for code generation.
MotionInstructionType.m MATLAB enumeration class file that represents the type of

motion API calls. For example, isMAM, isMSF. This file is
used only during simulation.

plc_keyword_hook.m Helper file to avoid name mangling and reserved keyword
limitations.

plcgeneratemotionapicode.p Function that transforms the chart in the model to make it
suitable for code generation.

Before you start, copy the files in the example to the current working folder.

1 Create a Simulink model with a Stateflow chart.
2 Load the bus data types from the MotionTypesForSim.mat file into the workspace by using the

load function.
3 Create data that represents the drive and motion instructions for the chart. For information on

adding data to Stateflow charts, see “Add Stateflow Data” (Stateflow)

4 Copy the drive(axis) model from the DriveLibrary.slx file into the Stateflow chart. The drive
model must be copied as an atomic subchart.

1 Getting Started

1-22

The drive logic Stateflow chart models a real world drive with parameters such as trajectory and
delay. Any drive subchart has the following data:

5 Use the Subchart Mappings dialog to map the drive subchart data store memory data with the
local data of the appropriate names in the container chart. For more information, see “Map
Variables for Atomic Subcharts and Boxes” (Stateflow). The “Simulating and Generating
Structured Text Code for Rockwell Motion Instructions” on page 25-40 example has the
following mapping for Drive1.

6 Use graphical functions to create motion API instructions. For example, for the Motion Servo
On (MSO) instruction:

 Simulation and Code Generation of Motion Instructions

1-23

The mapping between the inputs to the outputs is through "pass by reference".
7 Create the controller logic in another subchart and use the motion instructions created in the

previous step in the chart. Controller1 in the example has the following Stateflow chart.

Simulation of the Motion API Model
You can run simulation on the model containing the motion instructions and see the state changes the
controller chart and the Drive subchart. You can also log the local data of the chart such as AXIS
and the MOTION_INSTRUCTION variables For more information, see “Configure States and Data for
Logging” (Stateflow).

1 Getting Started

1-24

At the end of simulation, the logged signals are captured in the base workspace as a variable called
logsout. This can be imported into Simulation Data Inspector.

 Simulation and Code Generation of Motion Instructions

1-25

Structured Text Code Generation
Use the plcgeneratemotionapicode function to prepare the model for code generation and
generate structured text code. The plcgeneratemotionapicode takes the full path name of
subsystem containing the original chart as an input and creates a new model from which structured
text code can be generated.

Adding Support for Other Motion Instructions
The plcdemo_motion_api_rockwell example has support for only the following motion
instructions:

• MAM
• MAS
• MSF
• MSO

To use other Rockwell Automation RSLogix motion instructions in the model (For example, Motion
Axis Jog (MAJ)), you must perform the following steps:

1 Getting Started

1-26

1 Because the MAJ instruction is similar to MAM instruction, create a bus for MAJ with elements
similar to that of MAM.

2 Update the MotionTypesForSim.mat file with the new definitions for MAJDATA and
AXIS_SERVO_DRIVE.

3 In the Stateflow chart, create a graphical function representing MAJ (similar to MAM). Assign the
appropriate inputs and outputs.

4 Create single transition with commands to set the output values.

 Simulation and Code Generation of Motion Instructions

1-27

5 Remove the transition commands and copy the graphical function to the MotionApiStubs.slx.

1 Getting Started

1-28

6 Update the functionName variable in the getDriveTemplateNames.m file to include MAJ.

 Simulation and Code Generation of Motion Instructions

1-29

7 Update the DriveLibrary.slx file to respond to MAJ calls during simulation.

• Create isMAJ graphical function (similar to isMAM).

1 Getting Started

1-30

• Update the Drive subchart to respond to MAJ by implementing required transitions etc
(similar to MAM as shown).

 Simulation and Code Generation of Motion Instructions

1-31

8 Create or update the controller logic as required. Create a new state and add MAJ instruction to
it (similar to the MAM)

1 Getting Started

1-32

9 Perform simulation and generate code using the steps described earlier.

 Simulation and Code Generation of Motion Instructions

1-33

Mapping Simulink Semantics to
Structured Text

• “Generated Code Structure for Simple Simulink Subsystems” on page 2-2
• “Generated Code Structure for Reusable Subsystems” on page 2-4
• “Generated Code Structure for Triggered Subsystems” on page 2-6
• “Generated Code Structure for Stateflow Charts” on page 2-8
• “Generated Code Structure for MATLAB Function Block” on page 2-12
• “Generated Code Structure for Multirate Models” on page 2-14
• “Generated Code Structure for Subsystem Mask Parameters” on page 2-16
• “Global Tunable Parameter Initialization for PC WORX” on page 2-20
• “Considerations for Nonintrinsic Math Functions” on page 2-21

2

Generated Code Structure for Simple Simulink Subsystems
This topic assumes that you have generated Structured Text code from a Simulink model. If you have
not yet done so, see “Generate Structured Text from the Model Window” on page 1-9.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE. Generated code for
other IDE platforms looks different.

1 If you do not have the plcdemo_simple_subsystem.exp file open, open it in the MATLAB
editor. In the folder that contains the file, type:

edit plcdemo_simple_subsystem.exp

A file like the following is displayed.

The following figure illustrates the mapping of the generated code to Structured Text
components for a simple Simulink subsystem. The Simulink subsystem corresponds to the
Structured Text function block, Subsystem.

Note The coder maps alias data types to the base data type in the generated code.

2 Inspect this code as you ordinarily do for PLC code. Check the generated code.

Note The Simulink model for plcdemo_simple_subsystem does not contain signal names at the
input or output of the SimpleSubsystem block. So the generated code has the port names U and Y

2 Mapping Simulink Semantics to Structured Text

2-2

as the input and output variable names of the FUNCTION_BLOCK. However, even if your model does
contain signal names, coder only uses port names in the generated code.

 Generated Code Structure for Simple Simulink Subsystems

2-3

Generated Code Structure for Reusable Subsystems
This topic assumes that you have generated Structured Text code from a Simulink model. If you have
not yet done so, see “Generate Structured Text from the Model Window” on page 1-9.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE. Generated code for
other IDE platforms looks different.

1 Open the plcdemo_reusable_subsystem model.
2 Open the PLC Coder app.
3 Click Generate PLC Code.

The Simulink PLC Coder software generates Structured Text code and places it in
current_folder/plcsrc/plcdemo_reusable_subsystem.exp.

4 If you do not have the plcdemo_reusable_subsystem.exp file open, open it in the MATLAB
editor.

The following figure illustrates the mapping of the generated code to Structured Text
components for a reusable Simulink subsystem. This graphic contains a copy of the hierarchical
subsystem, ReusableSubsystem. This subsystem contains two identical subsystems, S1 and S2.
This configuration enables code reuse between the two instances (look for the
ReusableSubsystem string in the code).

2 Mapping Simulink Semantics to Structured Text

2-4

matlab:plcdemo_reusable_subsystem

5 Examine the generated Structured Text code. The code defines FUNCTION_BLOCK S1 once.

Look for two instance variables that correspond to the two instances declared inside the parent
FUNCTION_BLOCK ReusableSubsystem (i0_S1: S1 and i1_S1: S1). The code invokes these
two instances separately by passing in different inputs. The code invokes the outputs per the
Simulink execution semantics.

6 For IEC 61131-3 compatible targets, the non-step and the output ssMethodType do not use the
output variables of the FUNCTION_BLOCK. Therefore, the generated Structured Text code for
SS_INITIALIZE does not contain assignment statements for the outputs Y1 and Y2.

Note This optimization is applicable only to IEC 61131-3 compatible targets.

 Generated Code Structure for Reusable Subsystems

2-5

Generated Code Structure for Triggered Subsystems
This topic assumes that you have generated Structured Text code from a Simulink model. If you have
not yet done so, see “Generate Structured Text from the Model Window” on page 1-9.

The example in this topic shows generated code for the CoDeSys Version 2.3 PLC IDE. Generated
code for other IDE platforms looks different.

1 Open the plcdemo_cruise_control model.
2 Open the PLC Coder app. Click the PLC Code tab.
3 Click Generate PLC Code.

The Simulink PLC Coder software generates Structured Text code and places it in
current_folder/plcsrc/plcdemo_cruise_control.exp.

4 If you do not have the plcdemo_cruise_control.exp file open, open it in the MATLAB editor.

The following figure illustrates the mapping of the generated code to Structured Text
components for a triggered Simulink subsystem. The first part of the figure shows the Controller
subsystem and the triggered Stateflow chart that it contains. The second part of the figure shows
excerpts of the generated code. Notice the zero-crossing functions that implement the triggered
subsystem semantics.

2 Mapping Simulink Semantics to Structured Text

2-6

matlab:plcdemo_cruise_control

 Generated Code Structure for Triggered Subsystems

2-7

Generated Code Structure for Stateflow Charts
The examples in this topic show generated code for the CoDeSys Version 2.3 PLC IDE. Generated
code for other IDE platforms looks different.

Stateflow Chart with Event Based Transitions
Generate code for the Stateflow chart ControlModule in the model
plcdemo_stateflow_controller. Here is the chart:

2 Mapping Simulink Semantics to Structured Text

2-8

matlab:plcdemo_stateflow_controller

You can map the states and transitions in the chart to the generated code. For instance, the transition
from the state Aborting to Aborted appears in the generated code as:

ControlModule_IN_Aborting:
 rtb_out := sABORTING;
 (* During 'Aborting': '<S1>:11' *)
 (* Graphical Function 'is_active': '<S1>:73' *)
 (* Transition: '<S1>:75' *)
 IF NOT drive_state.Active THEN
 (* Transition: '<S1>:31' *)
 is_c2_ControlModule := ControlModule_IN_Aborted;
 (* Entry 'Aborted': '<S1>:12' *)
 rtb_out := sABORTED;
 (* Graphical Function 'stop_drive': '<S1>:88' *)
 (* Transition: '<S1>:90' *)
 driveOut.Start := FALSE;
 driveOut.Stop := TRUE;
 driveOut.Reset := FALSE;
 END_IF;

For more information on the inlining of functions such as start_drive, stop_drive, and
reset_drive in the generated code, see “Control Code Partitions for MATLAB Functions in
Stateflow Charts” on page 8-8.

Stateflow Chart with Absolute Time Temporal Logic
Generate code for the Stateflow chart Temporal in the model plcdemo_sf_abs_time. Here is the
chart:

 Generated Code Structure for Stateflow Charts

2-9

matlab:plcdemo_stateflow_controller

You can map states and transitions in the chart to the generated code. For instance, the transition
from state B to C appears as:
 Temporal_IN_B:
 (* During 'B': '<S1>:2' *)
 temporalCounter_i1(timerAction := 2, maxTime := 4000);
 IF temporalCounter_i1.done THEN
 (* Transition: '<S1>:8' *)
 is_c2_Temporal := Temporal_IN_C;
 temporalCounter_i1(timerAction := 1, maxTime := 0);
 ELSE
 (* Outport: '<Root>/pulse' *)
 pulse := 2.0;
 END_IF;

The variable temporalCounter_i1 is an instance of the function block PLC_CODER_TIMER defined
as:

FUNCTION_BLOCK PLC_CODER_TIMER
VAR_INPUT
 timerAction: INT;
 maxTime: DINT;
END_VAR
VAR_OUTPUT
 done: BOOL;
END_VAR
VAR
 plcTimer: TON;
 plcTimerExpired: BOOL;

2 Mapping Simulink Semantics to Structured Text

2-10

END_VAR
CASE timerAction OF
 1:
 (* RESET *)
 plcTimer(IN:=FALSE, PT:=T#0ms);
 plcTimerExpired := FALSE;
 done := FALSE;
 2:
 (* AFTER *)
 IF (NOT(plcTimerExpired)) THEN
 plcTimer(IN:=TRUE, PT:=DINT_TO_TIME(maxTime));
 END_IF;
 plcTimerExpired := plcTimer.Q;
 done := plcTimerExpired;
 3:
 (* BEFORE *)
 IF (NOT(plcTimerExpired)) THEN
 plcTimer(IN:=TRUE, PT:=DINT_TO_TIME(maxTime));
 END_IF;
 plcTimerExpired := plcTimer.Q;
 done := NOT(plcTimerExpired);
END_CASE;
END_FUNCTION_BLOCK

 Generated Code Structure for Stateflow Charts

2-11

Generated Code Structure for MATLAB Function Block
This topic assumes that you have generated Structured Text code from a Simulink model. If you have
not yet done so, see “Generate Structured Text from the Model Window” on page 1-9.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE. Generated code for
other IDE platforms looks different.

1 Open the plcdemo_eml_tankcontrol model.
2 Open the PLC Coder app. Click the PLC Code tab.
3 Click Generate PLC Code.

The Simulink PLC Coder software generates Structured Text code and places it in
current_folder/plcsrc/plcdemo_eml_tankcontrol.exp.

4 If you do not have the plcdemo_eml_tankcontrol.exp file open, open it in the MATLAB
editor.

The following figure illustrates the mapping of the generated code to Structured Text
components for a Simulink Subsystem block that contains a MATLAB Function block. The coder
tries to perform inline optimization on the generated code for MATLAB local functions. If the
coder determines that it is more efficient to leave the local function as is, it places the generated
code in a Structured Text construct called FUNCTION.

5 Examine the generated Structured Text code.

2 Mapping Simulink Semantics to Structured Text

2-12

matlab:plcdemo_eml_tankcontrol

 Generated Code Structure for MATLAB Function Block

2-13

Generated Code Structure for Multirate Models
This example assumes that you have generated Structured Text code from a Simulink model. If you
have not yet done so, see “Generate Structured Text from the Model Window” on page 1-9.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE. Generated code for
other IDE platforms looks different.

1 Open the plcdemo_multirate model. This model has two sample rates.
2 Open the PLC Coder app. Click the PLC Code tab.
3 Click Generate PLC Code.

The Simulink PLC Coder software generates Structured Text code and places it in
current_folder/plcsrc/plcdemo_multirate.exp.

4 If you do not have the plcdemo_multirate.exp file open, open it in the MATLAB editor and
examine the Structured Text code.

The generated code contains a global time step counter variable:

VAR_GLOBAL
 plc_ts_counter1: DINT;
END_VAR

In this example, there are two rates, and the fast rate is twice as fast as the slow rate, so the time
step counter counts to 1, then resets:

IF plc_ts_counter1 >= 1 THEN
 plc_ts_counter1 := 0;
ELSE
 plc_ts_counter1 := plc_ts_counter1 + 1;
END_IF;

The generated code for blocks running at slower rates executes conditionally based on the
corresponding time step counter values. In this example, the generated code for Gain1, Unit
Delay1, and Sum1 executes every other time step, when plc_ts_counter1 = 0, because those
blocks run at the slow rate. The generated code for Gain, Unit Delay, Sum, and Sum2 executes
every time step because those blocks run at the fast rate.

SS_STEP:

 (* Gain: '<S1>/Gain' incorporates:
 * Inport: '<Root>/U1'
 * Sum: '<S1>/Sum'
 * UnitDelay: '<S1>/Unit Delay' *)
 rtb_Gain := (U1 - UnitDelay_DSTATE) * 0.5;

 (* Outport: '<Root>/Y1' *)
 Y1 := rtb_Gain;
 IF plc_ts_counter1 = 0 THEN

 (* UnitDelay: '<S1>/Unit Delay1' *)
 UnitDelay1 := UnitDelay1_DSTATE;

 (* Gain: '<S1>/Gain1' incorporates:
 * Inport: '<Root>/U2'

2 Mapping Simulink Semantics to Structured Text

2-14

matlab:plcdemo_multirate

 * Sum: '<S1>/Sum1' *)
 rtb_Gain1 := (U2 - UnitDelay1) * 0.5;

 (* Outport: '<Root>/Y2' *)
 Y2 := rtb_Gain1;
 END_IF;

 (* Outport: '<Root>/Y3' incorporates:
 * Sum: '<S1>/Sum2'
 * UnitDelay: '<S1>/Unit Delay' *)
 Y3 := UnitDelay_DSTATE - UnitDelay1;

 (* Update for UnitDelay: '<S1>/Unit Delay' *)
 UnitDelay_DSTATE := rtb_Gain;

 IF plc_ts_counter1 = 0 THEN

 (* Update for UnitDelay: '<S1>/Unit Delay1' *)
 UnitDelay1_DSTATE := rtb_Gain1;

 END_IF;

In general, for a subsystem with n different sample times, the generated code has n-1 time step
counter variables, corresponding to the n-1 slower rates. Code generated from parts of the model
running at the slower rates executes conditionally, based on the corresponding time step counter
values.

 Generated Code Structure for Multirate Models

2-15

Generated Code Structure for Subsystem Mask Parameters
In the generated code for masked subsystems, the mask parameters map to function block inputs.
The values you specify in the subsystem mask are assigned to these function block inputs in the
generated code.

For example, the following subsystem, Subsystem, contains two instances, Filt1 and Filt2, of the
same masked subsystem.

2 Mapping Simulink Semantics to Structured Text

2-16

The two subsystems, Filt1, and Filt2, have different values assigned to their mask parameters. In
this example, Filt1_Order_Thau is a constant with a value of 5.

 Generated Code Structure for Subsystem Mask Parameters

2-17

Therefore, for the Filt1 subsystem, the Filt1_Order_Thau parameter has a value of 8, and for the
Filt2 subsystem, the Filt1_Order_Thau parameter has a value of 5.

The following generated code shows the Filt1 function block inputs. The rtp_Filt1_Order_Thau
input was generated for the Filt1_Order_Thau mask parameter.

FUNCTION_BLOCK Filt1
VAR_INPUT
 ssMethodType: SINT;
 InitV: LREAL;
 InitF: BOOL;
 Input: LREAL;
 rtp_Filt1_Order_Thau: LREAL;
 rtp_InitialValue: LREAL;
 rtp_Filt1_Order_Enable: BOOL;
END_VAR

The following generated code is from the FUNCTION_BLOCK Subsystem. The function block assigns a
value of 8 to the rtp_Filt1_Order_Thau input for the i0_Filt1 instance, and assigns a value of 5
to the rtp_Filt1_Order_Thau input for the i1_Filt1 instance.

SS_INITIALIZE:
 (* InitializeConditions for Atomic SubSystem: '<S1>/Filt1' *)

 i0_Filt1(ssMethodType := SS_INITIALIZE, InitV := In3,
 InitF := In2, Input := In1,
 rtp_Filt1_Order_Thau := 8.0,
 rtp_InitialValue := 0.0,
 rtp_Filt1_Order_Enable := TRUE);
 Out1 := i0_Filt1.Out;

 (* End of InitializeConditions for SubSystem: '<S1>/Filt1' *)

2 Mapping Simulink Semantics to Structured Text

2-18

 (* InitializeConditions for Atomic SubSystem: '<S1>/Filt2' *)
 i1_Filt1(ssMethodType := SS_INITIALIZE, InitV := In6,
 InitF := In5, Input := In4,
 rtp_Filt1_Order_Thau := 5.0,
 rtp_InitialValue := 4.0,
 rtp_Filt1_Order_Enable := TRUE);
 Out2 := i1_Filt1.Out;

 (* End of InitializeConditions for SubSystem: '<S1>/Filt2' *)
SS_STEP:
 (* Outputs for Atomic SubSystem: '<S1>/Filt1' *)

 i0_Filt1(ssMethodType := SS_OUTPUT, InitV := In3, InitF := In2,
 Input := In1, rtp_Filt1_Order_Thau := 8.0,
 rtp_InitialValue := 0.0,
 rtp_Filt1_Order_Enable := TRUE);
 Out1 := i0_Filt1.Out;

 (* End of Outputs for SubSystem: '<S1>/Filt1' *)

 (* Outputs for Atomic SubSystem: '<S1>/Filt2' *)
 i1_Filt1(ssMethodType := SS_OUTPUT, InitV := In6, InitF := In5,
 Input := In4, rtp_Filt1_Order_Thau := 5.0,
 rtp_InitialValue := 4.0,
 rtp_Filt1_Order_Enable := TRUE);
 Out2 := i1_Filt1.Out;

 (* End of Outputs for SubSystem: '<S1>/Filt2' *)

 Generated Code Structure for Subsystem Mask Parameters

2-19

Global Tunable Parameter Initialization for PC WORX
For PC WORX, the coder generates an initialization function, PLC_INIT_PARAMETERS, to initialize
global tunable parameters that are arrays and structures. This initialization function is called in the
top-level initialization method.

For example, suppose that your model has a global array variable, ParArrayXLUT:

ParArrayXLUT=[0,2,6,10];

In the generated code, the PLC_INIT_PARAMETERS function contains the following code to initialize
ParArrayXLUT:

(* parameter initialization function starts *)

ParArrayXLUT[0] := LREAL#0.0;

ParArrayXLUT[1] := LREAL#2.0;

ParArrayXLUT[2] := LREAL#6.0;

ParArrayXLUT[3] := LREAL#10.0;

(* parameter initialization function ends *)
</div></html>

The PLC_INIT_PARAMETERS function is renamed i0_PLC_INIT_PARAMETERS, and called in the top-
level initialization method:

CASE SINT_TO_INT(ssMethodType) OF

 0:

 i0_PLC_INIT_PARAMETERS();

2 Mapping Simulink Semantics to Structured Text

2-20

Considerations for Nonintrinsic Math Functions
When Simulink PLC Coder encounters a math function that is not intrinsic, it generates Structured
Text by replacing the non-intrinsic function with an equivalent IEC-61131 compatible intrinsic
function. For such cases, an input value that is larger than the allowed input range, causes overflow
and generates a NaN value.

For example, hyperbolic tan is not an intrinsic function. Simulink PLC Coder uses exp in the
generated code to represent tanh. More specifically, it uses (exp(2*x)-1)/(exp(2*x)+1). For large
values of x, this function overflows. The issue can be addressed by adding validation code or using
blocks before calling the tanh function to check that the range of the input is within acceptable
values. In MATLAB, tanh(x) for x>19 is 1.0000. So if x>19, return a value of 1.0000.

See Also

 Considerations for Nonintrinsic Math Functions

2-21

Generating Ladder Diagram

• “Simulink PLC Coder Ladder Diagram Code Generation” on page 3-2
• “Prepare Chart for Simulink PLC Coder Ladder Diagram Code Generation” on page 3-6
• “Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart” on page 3-9
• “Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram” on page 3-14
• “Restrictions on Stateflow Chart for Ladder Diagram Generation” on page 3-18
• “Supported Features in Ladder Diagram” on page 3-20
• “Import L5X Ladder Files into Simulink” on page 3-22
• “Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27
• “Generating Ladder Diagram Code from Simulink” on page 3-34
• “Generating C Code from Simulink Ladder” on page 3-36
• “Verify Generated Ladder Diagram Code” on page 3-38
• “Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow” on page 3-42
• “Create Custom Instruction in PLC Ladder Diagram Models” on page 3-44

3

Simulink PLC Coder Ladder Diagram Code Generation

Note Ladder diagram generation from Stateflow charts will be removed in a future release. To
generate ladder diagrams, use Simulink models instead. To create Simulink models compatible with
ladder logic generation, do one of the following:

• Use the blocks from the PLC Ladder library to create a model that is compatible with ladder
diagram generation. To open the PLC Ladder library, type plcladderlib at the MATLAB
command prompt.

• Import ladder logic from a L5X file with the plcimportladder function.

To generate ladder logic from the Simulink models, use these functions: plcgeneratecode and
plcgeneraterunnertb

Ladder Diagram (LD) is a graphical programming language used to develop software for
programmable logic controllers (PLCs). It is one of the languages that the IEC 61131 Standard
specifies for use with PLCs.

A program in Ladder Diagram notation is a circuit diagram that emulates circuits of relay logic
hardware. The underlying program uses Boolean expressions that translate readily to switches and
relays. When you program complex applications directly in Ladder Diagram notation, it is challenging
because you must write the programs with only Boolean variables and expressions.

Using Simulink PLC Coder, you can generate Ladder Diagram code for your applications from a
Stateflow chart (Stateflow). The benefits are:

• You can design your application by using states and transitions in a Stateflow chart. Once you
complete the design, you can generate Ladder Diagram code in XML or another format. You then
import the generated code to an IDE such as CODESYS 3.5 or RSLogix AOI 5000 and view the
Ladder Diagram.

• When you test your Stateflow chart by using a set of inputs, you can reuse these inputs to create a
test bench for the Ladder Diagram code. You import the test bench to your PLC IDE and compare
the results of simulation with the results of running the Ladder Diagram. If the results agree, the
original Stateflow chart is equivalent to the generated Ladder Diagram code.

The figure shows a simple Stateflow chart with three states and two transitions. Based on the
transition conditions, the chart transitions from one state to another.

3 Generating Ladder Diagram

3-2

The state State1 is active as long transitionCondition1 and transitionCondition2 are not
true. This means, State1 is active in one of these two cases:

• The chart has started execution through the default transition.
• The previous active state is also State1 and the

conditions transitionCondition1 and transitionCondition2 are false.

State3 is active in one of these two cases:

• The previous active state is State1, transitionCondition1 is false, and
transitionCondition2 is true.

• The previous active state is also State3. State3 is a terminating state.

You can import the generated Ladder Diagram code to CODESYS 3.5 and view the diagram. A portion
of the Ladder Diagram is shown.

 Simulink PLC Coder Ladder Diagram Code Generation

3-3

In the preceding Ladder Diagram, each rung of the ladder ends in a coil. The coil corresponds to a
state of the original chart. The contacts before the coil determine if the coil receives power. You can
compare the Ladder Diagram visually with the Stateflow chart. For instance, the coil State1_new
receives power in one of these two cases:

• The normally open contact State1 is closed and the normally closed contacts
transitionCondition1 and transitionCondition2 are open.

• The normally open contact stateflow_init is closed. This contact corresponds to the default
transition.

Once the coil State1_new receives power, the contact State1_new further down in the ladder is
then closed and the coil State1 receives power.

The Ladder Diagram executes from top to bottom and from left to right.

Ladder Diagram Generation Workflow
1 Before generating Ladder Diagram code from your Stateflow chart, confirm that your chart is

ready for code generation.

See “Prepare Chart for Simulink PLC Coder Ladder Diagram Code Generation” on page 3-6.
2 Generate Ladder Diagram code from the Stateflow chart. The code is in a format suitable for

import to an IDE.

Generate a test bench along with the code. The test bench is in the Structured Text language.
You can later import the code along with the test bench to your IDE. The test bench invokes the
Ladder Diagram code and compares the output against the expected outputs from the original
Stateflow chart.

See “Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart” on page 3-9.

3 Generating Ladder Diagram

3-4

3 Import the generated Ladder Diagram code to your CODESYS 3.5 IDE. Validate the diagram in
the IDE by using the generated test bench.

See “Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram” on page 3-14.

 Simulink PLC Coder Ladder Diagram Code Generation

3-5

Prepare Chart for Simulink PLC Coder Ladder Diagram Code
Generation

Note Ladder diagram generation from Stateflow charts will be removed in a future release. To
generate ladder diagrams, use Simulink models instead. To create Simulink models compatible with
ladder logic generation, do one of the following:

• Use the blocks from the PLC Ladder library to create a model that is compatible with ladder
diagram generation. To open the PLC Ladder library, type plcladderlib at the MATLAB
command prompt.

• Import ladder logic from a L5X file with the plcimportladder function.

To generate ladder logic from the Simulink models, use these functions: plcgeneratecode and
plcgeneraterunnertb

This example shows how to prepare your Stateflow chart for Ladder Diagram code generation. Once
your chart is ready, you can generate Ladder Diagram code from the chart.

For the complete Ladder Diagram code generation workflow, see “Ladder Diagram Generation
Workflow” on page 3-4.

Design PLC Application with Stateflow
Use Stateflow to design state machines that model PLC controllers. Your Stateflow chart must have
these properties:

• The inputs and outputs to the chart must be Boolean. They correspond to the input and output
terminals of your PLC.

• Each state in the chart must correspond to an output. The output is true if the state is active.

To ensure that each state in the chart is mapped to an output, in the Properties dialog box of each
state, select Create output for monitoring. Then, select Self activity.

• The transition conditions must involve only Boolean operations such as ~, &, and | between the
inputs.

3 Generating Ladder Diagram

3-6

For instance, in the following chart, transitionCondition1, and transitionCondition2 are
Boolean inputs to the model. State1, State2, and State3 correspond to Boolean outputs from the
model.

Some advanced Stateflow features on page 3-18 are not supported because of inherent restrictions
in Ladder Diagram semantics. You can use the function plccheckforladder to check if the chart
has the required properties. You can also use the function plcprepareforladder to change certain
chart properties so that the chart is ready for Ladder Diagram code generation.

You can start generating Ladder Diagram code from the chart. See the example in “Generate
Simulink PLC Coder Ladder Diagram Code from Stateflow Chart” on page 3-9.

Create Test Harness for Chart
If you want to generate a test bench for validation of the Ladder Diagram code, create a test harness
for the Stateflow chart. The test harness can consist of multiple test cases. Using the test harness,
Simulink PLC Coder can generate test benches for validation of the Ladder Diagram code.

You can manually create a test harness by using the Signal Builder block or autogenerate a test
harness by using Simulink Design Verifier™. To autogenerate the test harness:

1 Right-click the chart or a subsystem containing the chart. Select Design Verifier > Generate
Tests for Subsystem.

2 After test creation, select Create harness model.

The harness model is created. The model consists of the original subsystem coupled with inputs from
a Signal Builder block. The block consists of multiple test cases, so that the states and transitions in
your model are covered at least once.

 Prepare Chart for Simulink PLC Coder Ladder Diagram Code Generation

3-7

You can also create tests by using other blocks from the Simulink library. However, you must ensure
that the inputs to the chart are Boolean.

You can now generate Ladder Diagram code from the chart and validate the diagram.

• To generate Ladder Diagram code only, use the original Stateflow chart.
• To generate Ladder Diagram code with test bench, use the Stateflow chart coupled with the

Boolean inputs from the test cases. For instance, if you create a harness model with Simulink
Design Verifier, use the harness model for the Ladder Diagram code and test bench generation
instead of the original chart.

See “Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart” on page 3-9.

3 Generating Ladder Diagram

3-8

Generate Simulink PLC Coder Ladder Diagram Code from
Stateflow Chart

Note Ladder diagram generation from Stateflow charts will be removed in a future release. To
generate ladder diagrams, use Simulink models instead. To create Simulink models compatible with
ladder logic generation, do one of the following:

• Use the blocks from the PLC Ladder library to create a model that is compatible with ladder
diagram generation. To open the PLC Ladder library, type plcladderlib at the MATLAB
command prompt.

• Import ladder logic from a L5X file with the plcimportladder function.

To generate ladder logic from the Simulink models, use these functions: plcgeneratecode and
plcgeneraterunnertb

This example shows how to:

• Generate code from a Stateflow chart that you can view as Ladder Diagram in your IDE.
• Generate test bench for validation of the Ladder Diagram code in your IDE.

For the complete Ladder Diagram code generation workflow, see “Ladder Diagram Generation
Workflow” on page 3-4.

Stateflow Chart and Ladder Logic Diagram
The figure shows a Stateflow chart that implements three-aspect logic, a decision logic for many
railway signaling applications.

 Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart

3-9

The chart consists of five states: Init, Fault, Red, Yellow, and Green. Based on the input to the
chart, transitions to any of these states can take place. For instance, the state Red becomes active in
the following scenarios:

• Initialization and power up: The previous state is Init and the condition Power_Up is true.
• Fault rectification: The previous state is Fault and the condition VLDHealthy &

FaultRectified is true.
• Transitions from other colors: The previous state is Green or Yellow, the conditions that allow

transition to Red are true, and the conditions that allow transition to another color or to the
Fault state are false.

• Staying red: The previous state is Red and the conditions that allow transition to another state
are false.

3 Generating Ladder Diagram

3-10

The figure shows a portion of the Ladder Diagram code generated from the chart when viewed in the
CODESYS 3.5 IDE. The Ladder Diagram consists of contacts (normally open and normally closed) and
coils (normal, set, and reset).

 Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart

3-11

You can map elements of the original Stateflow chart to these coils and contacts. For instance, the
coil Red_new corresponds to the update of the state Red in the Stateflow chart. For the coil to receive
power, one of the following must be true:

• Initialization and power up: The normally open contacts Init and Power_Up must be closed.
• Fault rectification: The normally open contacts Fault and T_1_1_trans must be closed. The

contact T_1_1_trans represents the transition condition VLDHealthy & FaultRectified in
the chart.

• Transitions from other colors: The normally open contact Green must be closed and the
following must be true:

• The normally open contact T_2_3_trans must be closed. This contact corresponds to the
chart condition that must be true for transition to the Red state.

• The normally closed contacts T_2_1_trans and T_2_2_trans must stay closed. These
contacts correspond to the chart condition that must be false for transition to the Red state. If
the conditions are true, the contacts open and the coil no longer receives power.

• Staying red: The normally open contact Red must be closed, and the normally closed contacts
T_4_1_trans and T_4_2_trans must stay closed. These contacts correspond to the chart
conditions that must be false for the Red state to continue to be active. If the conditions are true,
the contacts open and the coil no longer receives power.

Generate Ladder Diagram from Chart
To generate Ladder Diagram code from the model plcdemo_ladder_three_aspect:

1 Open the model.
2 Open the PLC Coder app. Click the PLC Code tab.
3 Specify the target IDE for which to generate the Ladder Diagram code.

Click Settings. Specify a supported IDE for the option “Target IDE” on page 13-3. See “IDEs
Supported for Ladder Diagram Code Generation”. Click OK.

4 Right-click the chart and select PLC Code > Generate Ladder Logic for Chart.

If code generation is successful, in the subfolder plcsrc of the current working folder, you see the
file ModelName.xml. You import this file to your IDE and view the Ladder Diagram. For the
CODESYS 3.5 IDE, see “Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram” on
page 3-14.

You can also use the function plcgenerateladder to generate Ladder Diagram code from a
Stateflow chart.

Generate Ladder Diagram Along with Test Bench
You can generate a test bench to validate the generated Ladder Diagram code. You import the code
together with the test bench in your IDE and validate the Ladder Diagram against the original
Stateflow chart using the test bench. To generate test bench along with the Ladder Diagram code:

1 Open the PLC Coder app. Click the PLC Code tab.
2 Click Settings. Select the option “Generate Testbench for Subsystem” on page 13-7.

3 Generating Ladder Diagram

3-12

3 Right-click the chart and select PLC Code > Generate Ladder Logic for Chart.

The test benches use the inputs to the original Stateflow chart. Therefore, you can create test
harnesses for the original chart and reuse them for validation of the Ladder Diagram code.

You can also use the function plcgenerateladder to generate test benches.

After generating the Ladder Diagram code and the test benches, you can import them to your IDE.
For the CODESYS 3.5 IDE, see “Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate
Diagram” on page 3-14.

 Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart

3-13

Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate
Diagram

Note Ladder diagram generation from Stateflow charts will be removed in a future release. To
generate ladder diagrams, use Simulink models instead. To create Simulink models compatible with
ladder logic generation, do one of the following:

• Use the blocks from the PLC Ladder library to create a model that is compatible with ladder
diagram generation. To open the PLC Ladder library, type plcladderlib at the MATLAB
command prompt.

• Import ladder logic from a L5X file with the plcimportladder function.

To generate ladder logic from the Simulink models, use these functions: plcgeneratecode and
plcgeneraterunnertb.

This example shows how to import generated Ladder Diagram code to an IDE and validate the
generated code against the original Stateflow chart by using the generated test bench.

For this example, the CODESYS 3.5 IDE is used. You can also use one of the other supported IDE. See
“IDEs Supported for Ladder Diagram Code Generation”.

For the complete Ladder Diagram code generation workflow, see “Ladder Diagram Generation
Workflow” on page 3-4.

Import Ladder Diagram XML
After code generation, you see the Ladder Diagram code XML file ModelName.xml in a subfolder
plcsrc of the current working folder. To import the generated XML and view the Ladder Diagram in
the CODESYS 3.5 IDE:

1 Create an empty project.
2 Import the Ladder Diagram code to the project.

Select Project > Import PLCOpenXML and navigate to the folder containing the XML file.

A dialog box opens with a full list of the components imported from the XML. If you generate a
test bench for validation, you also see the testbench.

3 Generating Ladder Diagram

3-14

3 On the POUs pane, you see the project. View the Ladder Diagram in the project.

You can compare the Ladder Diagram with the original Stateflow chart.

For instance, if you generate Ladder Diagram code from the model
plcdemo_ladder_three_aspect, in the Ladder Diagram, you can identify the transition from
the Fault state to the Red state.

The transition appears in the Ladder Diagram in three steps:

 Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram

3-15

a The normally open contacts VLDHealthy and FaultRectified are closed. Coil
T_1_1_trans receives power and is energized.

b The normally open contacts Fault and T_1_1_trans are closed. The coil Red_new receives
power and is energized. Other conditions not shown in figure must also be satisfied.

c The normally open contact Red_new is closed. The coil Red receives power and is energized.

Besides coils and normally open contacts , the Ladder Diagram also uses:

•
Normally closed contacts : They appear if the ~ operator is used in a transition
condition.

•
Set coils and reset coils : They are used in the Ladder Diagram for chart
initialization. Reset coils are also used if you enforce additional safeguards against multiple
states from being simultaneously active. See the argument InsertGuardResets in
plcgenerateladder.

For more information about these symbols, refer to the IEC 61131-3 specifications.
4 Select Online > Simulation. Click the (Build) button and verify that there are no build

errors.

If the option is not active, you might have to change the version number in your XML. Search for
the version number in the XML and depending on the patch that you have, replace it with the
following version number:

• CODESYS V3.5 SP6 Patch1: 3.5.4.30
• CODESYS V3.5 SP6 Patch3: 3.5.6.30
• CODESYS V3.5 SP8 Patch2: 3.5.8.20
• CODESYS V3.5 SP8 Patch4: 3.5.8.40

Verify Ladder Diagram with Test Bench
In your project, you see the generated test bench. To simulate using the test bench and validate your
generated code:

1
Click the (Login) button and log in to the emulator device.

2
Click the (Start) button and begin simulation.

3 Double-click a test bench in your project. You see the following variables updating to reflect the
results of validation.

3 Generating Ladder Diagram

3-16

• The variable testCycleNum increases from 0 to the number of cycles.
• The variable testVerify remains TRUE as long as the test bench verification succeeds.

 Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram

3-17

Restrictions on Stateflow Chart for Ladder Diagram Generation

Note Ladder diagram generation from Stateflow charts will be removed in a future release. To
generate ladder diagrams, use Simulink models instead. To create Simulink models compatible with
ladder logic generation, do one of the following:

• Use the blocks from the PLC Ladder library to create a model that is compatible with ladder
diagram generation. To open the PLC Ladder library, type plcladderlib at the MATLAB
command prompt.

• Import ladder logic from a L5X file with the plcimportladder function.

To generate ladder logic from the Simulink models, use these functions: plcgeneratecode and
plcgeneraterunnertb

Ladder Diagram semantics must be represented with switches and relays. Therefore, if you intend to
generate a Ladder Diagram from a Stateflow chart, you cannot use some advanced features in your
chart. The Stateflow chart must have the following form:

• The inputs and outputs to the chart must be Boolean. These inputs and outputs correspond to the
input and output terminals of your PLC.

• Each state of the chart must correspond to a chart output.
• The expressions controlling the transition between states must involve only Boolean operations

between the inputs.

In addition, the chart must have the following properties. You can use the function
plccheckforladder to check if the chart has the required properties. You can also use the function
plcprepareforladder to change certain chart properties so that the chart is ready for Ladder
Diagram code generation.

• The chart Action Language must be C.
• Disable the following chart properties:

• Enable Super Step Semantics
• Execute (enter) Chart At Initialization
• Initialize Outputs Every Time Chart Wakes Up

• The chart must have at least one input and output. The input and output data must be Boolean.
• Each output must correspond to a state in the chart. The output is true if the state is active.

To ensure that each state in the chart is mapped to an output, in the Properties dialog box of each
state, select Create output for monitoring. Then, select Self activity.

3 Generating Ladder Diagram

3-18

• The chart must not have data with scope other than input or output.
• The chart must not include:

• Atomic subcharts
• Multiple default transition
• Simulink functions
• Parallel states
• State hierarchy
• History junctions
• Dangling transitions
• Super transitions crossing subchart boundaries
• Conditional default paths
• Self transitions

See Also

Related Examples
• “Prepare Chart for Simulink PLC Coder Ladder Diagram Code Generation” on page 3-6
• “Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart” on page 3-9
• “Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram” on page 3-14

More About
• “Simulink PLC Coder Ladder Diagram Code Generation” on page 3-2

 Restrictions on Stateflow Chart for Ladder Diagram Generation

3-19

Supported Features in Ladder Diagram
The ladder diagram import feature of Simulink PLC Coder allows you to import Ladder Diagram
created with Rockwell Automation IDEs such as RSLogix 5000 and Studio 5000 into the Simulink
environment as a model.

Supported Ladder Elements
Simulink PLC Coder supports the following ladder elements:

• Boolean variables
• Data access to array elements, bus elements, bit, and constant variables.
• Multiple rungs
• Simple Jump, Temporary End, and other supported execution control elements.
• Ladder diagram blocks. See plcladderlib.
• Ladder Diagram Instructions. See “Instructions Supported in Ladder Diagram” on page 15-2
• L5X Datatypes:

L5X Data Types Simulink Types
BOOL Boolean datatype
SINT Int8 datatype
INT Int16 datatype
DINT Int32 datatype
REAL Single datatype
TIMER Timer bustype
COUNTER Counter bustype
CONTROL Control bustype
UDT UDT bustype
AOI AOI bustype

• Ladder diagram tags

• Controller Tags
• Program Tags
• AOI Tags such as Input, Output and InOut

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About
• “Import L5X Ladder Files into Simulink” on page 3-22
• “Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27

3 Generating Ladder Diagram

3-20

• “Generating Ladder Diagram Code from Simulink” on page 3-34
• “Generating C Code from Simulink Ladder” on page 3-36
• “Verify Generated Ladder Diagram Code” on page 3-38
• “Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow” on page 3-42

 Supported Features in Ladder Diagram

3-21

Import L5X Ladder Files into Simulink
This example shows how to import a Ladder Diagram from an .L5X file created by using Rockwell
Automation IDEs such as RSLogix 9 5000 and Studio 5000 into the Simulink environment. The import
operation is performed by using the plcimportladder function.

Description of the Ladder Diagram
The figure shows a Ladder Diagram with a simple timer. The Ladder Diagram consists of four rungs
with contacts (Switch_A, Light1, Motor_timer.DN), coils (Light1, Light2, Motor), and TON
timer function.

The simple_timer.L5X file was created by using the RSLogix 5000 IDE. A snippet of the .L5X file
is shown.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<RSLogix5000Content SchemaRevision="1.0" SoftwareRevision="30.00"
TargetName="simple_timer" TargetType="Controller"
ContainsContext="false" Owner="Arun Mathew Iype, MathWorks"
ExportDate="Mon Nov 12 16:35:28 2018" ExportOptions="NoRawData
L5KData DecoratedData ForceProtectedEncoding AllProjDocTrans">
<Controller Use="Target" Name="simple_timer"
ProcessorType="Emulate 5570" MajorRev="30"
MinorRev="11" TimeSlice="20" ShareUnusedTimeSlice="1"
ProjectCreationDate="Mon Nov 12 16:33:36 2018"
LastModifiedDate="Mon Nov 12 16:33:43 2018"
SFCExecutionControl="CurrentActive"
SFCRestartPosition="MostRecent" SFCLastScan="DontScan"
ProjectSN="16#0000_0000"
MatchProjectToController="false" CanUseRPIFromProducer="false"
InhibitAutomaticFirmwareUpdate="0" PassThroughConfiguration="EnabledWithAppend"
DownloadProjectDocumentationAndExtendedProperties="true"
DownloadProjectCustomProperties="true"
ReportMinorOverflow="false">
<RedundancyInfo Enabled="false" KeepTestEditsOnSwitchOver="false"
IOMemoryPadPercentage="90"
DataTablePadPercentage="50"/>
<Security Code="0" ChangesToDetect="16#ffff_ffff_ffff_ffff"/>
<SafetyInfo/>
<DataTypes/>
<Modules>
<Module Name="Local" CatalogNumber="Emulate 5570" Vendor="1" ProductType="14"
ProductCode="53" Major="30" Minor="11" ParentModule="Local" ParentModPortId="1"
Inhibited="false" MajorFault="true">
<EKey State="ExactMatch"/>
<Ports>
<Port Id="1" Address="0" Type="ICP" Upstream="false">

3 Generating Ladder Diagram

3-22

<Bus Size="10"/>
</Port>
</Ports>
</Module>
</Modules>
<AddOnInstructionDefinitions/>
<Tags/>
<Programs>
<Program Name="MainProgram" TestEdits="false" MainRoutineName="MainRoutine"
Disabled="false" UseAsFolder="false">
...
<Tags>

Import Ladder Diagram
Before importing the .L5X file into Simulink :

• Verify the Ladder Diagram file is a valid .L5X file. The file can be verified by compiling it in
Rockwell Automation IDE.

• If the file is valid, copy the .L5X file into a folder with read and write permissions. You can also
create a separate folder to store all the imported files along with the original Ladder
Diagram .L5X file.

Use the plcimportladder function to import the ladder into Simulink. For this example, the
program Name of the ladder is MainProgram and the MainRoutineName is MainRoutine.

>> plcimportladder('simple_timer.L5X')

The Ladder Diagram is imported into the pwd\simple_timer.slx Simulink model. The state
information of the ladder elements is stored in the data store memory and updated by the model
during simulation. The plcout\simple_timer_value.m file gets called during the pre-load stage
of the Simulink model. This file sets the timer initial values in Motor_timer data store memory.

The simple_timer.slx Simulink model consists of a Ladder Diagram Controller as the top unit.

This controller has a Main Task and Controller Tags. The Main Task consists of a Main
Program.

 Import L5X Ladder Files into Simulink

3-23

The Main Program contains the Simulink implementation of the simple_timer.L5X Ladder
Diagram. The ladder rung executes from top to bottom and left to right.

3 Generating Ladder Diagram

3-24

You can use the Signal Builder block to create test inputs for Switch_A and verify the operation of
the imported ladder. You can also generate a PLC Ladder Diagram code or a C code for the top-level
subsystem. If you want to edit the imported ladder, the Simulink blocks are in the template Ladder
Diagram Library. To open the library, enter:

plcladderlib

If your Ladder Diagram has comments associated with the rung, these comments are also imported to
Simulink. In the Simulink environment, the comments are connected to the respective rung. For
example, the Ladder Diagram for the simple timer has a comment Switch ON Delay. After
importing the ladder diagram to Simulink, the comment is also imported as seen in Rung 3 of the
imported Simulink model.

 Import L5X Ladder Files into Simulink

3-25

Similarly, when you generate Ladder Diagram code from a Simulink model containing a rung
comment, the comment is also generated in the (L5X) ladder file. If your Simulink model has
multiple comments associated with the rung, in the generated Ladder Diagram, these comments are
merged into a single comment with each individual comment appearing in a separate line.

If you have an L5X file containing an AOI with mixed ordered arguments, this order is preserved
during import and export of the files.

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About
• “Supported Features in Ladder Diagram” on page 3-20
• “Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27
• “Generating Ladder Diagram Code from Simulink” on page 3-34
• “Generating C Code from Simulink Ladder” on page 3-36
• “Verify Generated Ladder Diagram Code” on page 3-38
• “Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow” on page 3-42

3 Generating Ladder Diagram

3-26

Modeling and Simulation of Ladder Diagrams in Simulink
The ladder modeling feature of Simulink PLC Coder enables you to create Ladder Diagrams in the
Simulink environment as a model. After creating the Ladder Diagram, you can simulate and generate
code for the Ladder Diagram models from within the Simulink environment.

1 To create a Ladder Diagram, open the Simulink PLC Coder Ladder library. At the MATLAB
command line, enter:

plcladderlib

The Ladder library opens containing all the blocks required for building the Ladder Diagram in
Simulink.

 Modeling and Simulation of Ladder Diagrams in Simulink

3-27

3 Generating Ladder Diagram

3-28

2 Create a blank Simulink model. You can drag appropriate blocks from the library to build your
ladder logic model in Simulink. For each block, you can double-click the block to see the block
parameters and use the help menu to view its description. For more information on the Ladder
instructions that are implemented by these blocks, refer to the LOGIX 5000 Controllers General
Instructions Reference Manual.

3 The Simulink PLC Coder Ladder library contains top level ladder logic block such as
PLCControllerSuite, PLC Controller, Task, Ladder Diagram Program, Ladder diagram Subroutine,
Ladder Diagram Function Block (AOI), and AOI Runner. All these blocks are organization blocks
(Ladder Diagram containers) that cannot be on Ladder Diagram rungs. Apart from these
organizational blocks, other blocks from the library cannot be top level ladder logic block for
simulation.

• PLCControllerSuite can hold controller tags that are visible for all ladder logic blocks in this
controller, and also can contain Task block.

• PLCController allows you to build ladder logic directly. All the tags in the controller level
ladder diagram are controller tags (global variables or I/O symbols)

• Task is used to contain Ladder Diagram programs that are using the same sample time and
priority.

Note Code generation for empty Task blocks is not supported. If a Task block is empty, the
software does not issue warnings or errors during code generation, but the generated code
produces errors in Rockwell IDEs.

• Ladder Diagram Program enables you to build ladder logic directly. Program-level Ladder
Diagram can have program scope variables and also can access controller tags if defined.

• Ladder Diagram Subroutine enables you to create and define a named ladder routine. You can
edit the logic implemented by the subroutine by clicking the Routine Logic button under
the block parameters menu of this block.

• Ladder Diagram Function Block (AOI) enables you to create the Ladder Diagram function
block. You can edit the parameters and specifications of this block by using the various
options available under the block parameters menu of this block.

• AOI Runner is special program block that can contain only one Ladder Diagram Function
Block (AOI: add-on instruction) designed for AOI testing (test bench generation and
verification).

4 Drag a PLCControllerSuite block into the blank model you created in the previous step. You can
double-click each organizational unit to traverse to the lower level ladder logic semantics and
build your Ladder Diagram. The empty ladder logic semantics is shown.

 Modeling and Simulation of Ladder Diagrams in Simulink

3-29

5 Use the XIC and Motor blocks from the library to construct a simple ladder diagram. Use Add
Rungs or Add 1 Rung buttons in the ladder logic semantic to add a new rung. All added blocks
must be on the rung. Use the Junction block to merge rung branches.

6 Double-click each new block added to the rung and specify the tags. In Ladder Diagrams, tags
(variables) are used for representing all inputs, outputs, and internal memory. The tag can be a
variable name or an expression like:

3 Generating Ladder Diagram

3-30

• Variable Name: Start, Stop, Switch
• Bit Access: MyInt.0, MyInt.31
• Array Element: A[1], B[2,3], C[idx], D[i, j]. Use of braces for indexing is not allowed in a tag

expression. For example, A(2) is illegal.
• Structure: A.B, C.D, E.F.G
• Mixture: A[1].B[i,j].C[3].D
• Expressions: A[3].B > C.D; A[3]+B[4].C

7 The tags can have attributes such as Data Type, Initial Value, and size. To change the
attributes of the tag, open the Program Variables table within the Ladder Diagram Program
block. You can delete the unused variables in the variable table by selecting the Delete option.
You must select Apply for the changes to take effect. Go to controller level block, and double-
click the Controller Tags table to specify the global variable and I/O symbol attributes.

8 To add rung comments to your model in Simulink, create a connected annotation (see Motor
Control Logic in image) to the rung terminal block. For more information on annotation
connectors, see “Associate Annotations with Blocks and Areas”.

9 Update the ladder logic model to reflect changes. You have now created a simple ladder model in
Simulink.

Model an AOI Prescan Routine
1 Double-click the Function Block (AOI) inside the parent program unit.
2 Select the Allow Prescan Routine check box and click Apply button.
3 Click the Prescan Routine button.
4 Add the logic to Prescan Routine Ladder Diagram.

 Modeling and Simulation of Ladder Diagrams in Simulink

3-31

Note If Function Block (AOI) is at the top level of a ladder diagram model and not inside a parent
program unit, the Allow Prescan Routine option is not enabled.

Ladder Model Simulation
To perform Ladder Diagram simulation in Simulink, you must connect appropriate input and output
blocks to the ladder model.

1 Use the plcladderoption function to enable Animation. At the MATLAB command line, enter:

plcladderoption('simpleController','Animation','on')
2 Connect input and output ports to the PLCControllerSuite block to provide inputs for simulation

and read the outputs. You must modify the attributes of the switch and motor tags. To change the
attributes of the tag, open the Program Variables table within the Ladder Diagram Program
block and set them to the values shown.

3 Go to controller level block and double-click the Controller Tags table to specify the global
variable and I/O symbol attributes.

4 The software now adds input and output ports to the PLCControllerSuite block. You can use
Simulink blocks to add inputs to the ladder model. For example, you can use the Constant block
to add Boolean inputs to mimic switch behavior.

5 Traverse to the Ladder Diagram Program block of the ladder model and Step Forward through
the simulation. The software uses the inputs provided, runs a behavioral simulation, and
animates the ladder rungs and blocks based on the execution state.

3 Generating Ladder Diagram

3-32

6 You can continue stepping forward or run a continuous simulation to the end.

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About
• “Supported Features in Ladder Diagram” on page 3-20
• “Import L5X Ladder Files into Simulink” on page 3-22
• “Generating Ladder Diagram Code from Simulink” on page 3-34
• “Generating C Code from Simulink Ladder” on page 3-36
• “Verify Generated Ladder Diagram Code” on page 3-38
• “Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow” on page 3-42

 Modeling and Simulation of Ladder Diagrams in Simulink

3-33

Generating Ladder Diagram Code from Simulink
The following example demonstrates how to import a simple Ladder Diagram from an .L5X file
(simpleController.L5X) into the Simulink environment and then generate Ladder Diagram (L5X)
from the imported model. The Ladder Diagram .L5X file was created using RSLogix 5000 IDE and
contains contacts and coils representing switches and motor. The following is a snapshot of the ladder
structure.

1 Use the plcladderimport function to import the ladder into Simulink.

[mdlName,mdlLib,busScript] = plcimportladder('simpleController.L5X','OpenModel','On')
2 The imported model contains a PLC Controller block named simpleController, followed by a

Task block named MainTask and finally a Ladder Diagram Program block named MainProgram.
The model imported into Simulink has blocks that implement the functionality of the contacts and
coils.

3 Generate code for the subsystem, simpleController/simpleController.

generatedFiles = plcgeneratecode('simpleController/simpleController');

3 Generating Ladder Diagram

3-34

PLC code generation successful for 'simpleController/simpleController'.

Generated ladder files:
plcsrc\simpleController_gen.L5X

Note You cannot generate Structured Text code from the Ladder Diagram blocks. The Ladder
feature supports only ladder code generation.

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About
• “Supported Features in Ladder Diagram” on page 3-20
• “Import L5X Ladder Files into Simulink” on page 3-22
• “Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27
• “Generating C Code from Simulink Ladder” on page 3-36
• “Verify Generated Ladder Diagram Code” on page 3-38
• “Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow” on page 3-42

 Generating Ladder Diagram Code from Simulink

3-35

Generating C Code from Simulink Ladder
The following example demonstrates how to import a simple ladder diagram from an .L5X file
(simpleController.L5X) into the Simulink environment and then generate C code from the
imported model. You must have a valid Simulink Coder license and necessary compilers to generate C
code from the model. For more information, see “Get Started with Simulink Coder” (Simulink Coder).

The .L5X file was created using RSLogix 5000 IDE and contains contacts and coils representing
switches and motor. The following is a snapshot of the ladder structure.

Use the plcladderimport function to import the ladder into Simulink.

[mdlName,mdlLib,busScript] = plcimportladder('simpleController.L5X','OpenModel','On')

The imported model contains a PLC Controller block named simpleController, followed by a Task
block named MainTask and finally a Ladder Diagram Program block named MainProgram. The
model imported into Simulink has blocks that implement the functionality of the contacts and coils.

To generate C code for the subsystem, simpleController/simpleController you must first
enable 'FastSim' option for the Simulink Ladder Diagram model.

currentState = plcladderoption('simpleController/simpleController','FastSim','on');

3 Generating Ladder Diagram

3-36

Open the Configuration Parameters dialog box from the model editor by clicking Modeling > Model
Settings.

Alternately, type the following commands at the MATLAB command prompt.

cs = getActiveConfigSet(model);
openDialog(cs);

Ensure that a valid Toolchain is selected.

In the model window, initiate code generation and the build process for the model by using any of the
following options:

• Click the Build Model button.
• Press Ctrl+B.
• In the Apps gallery, under Code Generation, click Embedded Coder. The C Code tab opens.

Select Build> Build.
• Invoke the slbuild command from the MATLAB command line.

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About
• “Supported Features in Ladder Diagram” on page 3-20
• “Import L5X Ladder Files into Simulink” on page 3-22
• “Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27
• “Generating Ladder Diagram Code from Simulink” on page 3-34
• “Verify Generated Ladder Diagram Code” on page 3-38

 Generating C Code from Simulink Ladder

3-37

Verify Generated Ladder Diagram Code
The following example demonstrates how to import a simple Ladder Diagram from an .L5X file
(simpleXIC.L5X) into the Simulink environment and generate test bench code for it. The Ladder
Diagram .L5X file was created using RSLogix 5000 IDE and contains an AOI named simpleXIC with
contact and coil representing a switch and a light. The following is a snapshot of the ladder structure.

1 Use the plcladderimport function to import the ladder into Simulink.
[mdlName,mdlLib,busScript] = plcimportladder('simpleXIC.L5X',...
'OpenModel','On','TopAOI','simpleXIC')

2 The imported model contains an AOI Runner block named simpleXIC_runner, followed by a
Ladder Diagram Function (AOI) block named simpleXIC.

3 Add Signal Builder input block, Scope and output ports as shown.

3 Generating Ladder Diagram

3-38

4 Modify the Signal Builder input to mimic a switch operation as shown.

 Verify Generated Ladder Diagram Code

3-39

5 Generate test-bench for the Ladder Diagram model.

Tbcode = plcgeneraterunnertb('simpleXIC_runner/simpleXIC_runner')

Tbcode =

 1×1 cell array

 {'C:\runnerTB\simpleXIC_runner.L5X'}

If the test-bench code generation is successful, a test-bench file simpleXIC_runner.L5X is
created. The generated AOI test bench file can be verified on Rockwell Automation IDE.

If you have created the Ladder Diagram model in Simulink and are generating Ladder Diagram (L5X)
code, you can also use the Generate testbench for subsystem option available on the PLC Code

3 Generating Ladder Diagram

3-40

Generation pane in the Configuration Parameters dialog box to generate test bench code along with
ladder code. When the selected subsystem is ladder AOI Runner block and test bench option is on,
the generated code will include test bench, selected AOI, as well as dependent AOI and UDT types.

See Also
plccleartypes | plcgeneratecode | plcgeneraterunnertb | plcimportladder |
plcladderlib | plcladderoption | plcloadtypes

More About
• “Supported Features in Ladder Diagram” on page 3-20
• “Import L5X Ladder Files into Simulink” on page 3-22
• “Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27
• “Generating Ladder Diagram Code from Simulink” on page 3-34
• “Generating C Code from Simulink Ladder” on page 3-36
• “Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow” on page 3-42

 Verify Generated Ladder Diagram Code

3-41

Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix
IDE Workflow

These flowcharts show the workflow comparison in a ladder diagram created by Simulink PLC Coder
versus a ladder diagram created in the Rockwell Automation RSLogix IDE.

• You first place either the PLC Controller or PLC Controller Suite block onto the blank Simulink
model page. This block contains all the tasks, programs, program tags, controller tags, routines,
AOI blocks and so on. For more information, see PLC Controller.

• You place the Task block inside the PLC Controller or PLC Controller suite block. The Task blocks
house the programs, program tags, routines, AOI blocks, and so on. For more information see,
Task.

• You place the Ladder Diagram Program block or blocks inside the Task block. The Ladder Diagram
Program block contains program tags, routines , AOI blocks, and so on. For more information see,
Program

• You next place JSR (Jump To Subroutine) blocks within the Ladder Diagram Program block. The
JSR blocks contain the ladder rungs, ladder logic and AOI blocks within them. For more
information see ,Subroutine.

• You can place the AOI block either inside the JSR block or inside the Ladder Diagram Program
block. For more information see, Function Block (AOI).

3 Generating Ladder Diagram

3-42

See Also
Function Block (AOI) | PLC Controller | PLC Controller Suite | Program | Subroutine
| Task

More About
• “Supported Features in Ladder Diagram” on page 3-20
• “Import L5X Ladder Files into Simulink” on page 3-22
• “Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27
• “Generating Ladder Diagram Code from Simulink” on page 3-34
• “Verify Generated Ladder Diagram Code” on page 3-38

 Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow

3-43

Create Custom Instruction in PLC Ladder Diagram Models
You can create user-defined instructions for your ladder models by using the Custom Instruction
block. You can store these blocks containing custom instructions in a user-defined library named
plcuserlib.slx. You can also import, simulate, and export your ladder instructions by using your
custom blocks.

Create User-Defined Instruction
To create a user-defined instruction, use a Custom Instruction block added to the Simulink PLC Coder
Ladder Library.

1 To open the Ladder Library, at the MATLAB command line, enter:

plcladderlib

The Ladder Library opens all the blocks required for building the Ladder Diagram in Simulink.
2 To create a new Simulink library, in the Library tab click New > Library. From the Simulink

start page, select Blank Library and click Create Library.
3 Drag a Custom Instruction block from the Ladder Library to the new library that you created.
4 To build your own ladder logic model, double-click your Custom Instruction block to see the block

parameters. Use the Help menu to view their descriptions.

3 Generating Ladder Diagram

3-44

5 In Instruction Name text field, give a name to your instruction. Specify the inputs and outputs
required for your instruction block. Click Apply, and then click OK.

6 To look inside the mask, click in the Custom Instruction block. The blocks inside the mask
enable the instruction to simulate with other PLC Ladder instructions. The user-defined logic is
included in the Instruction_Enable block.

7 Save the library as plcuserlib.slx. You can add multiple instruction blocks to this library.

Calculate Square Root by using Custom Instruction Block
This example shows how to calculate square root of an input signal by using a Custom Instruction
block.

1 To open the Simulink Start Page, on the MATLAB Home tab, click Simulink.
2 Select Blank Library and click Create Library.
3 Save the library as plcuserlib.slx to a folder on the MATLAB path.
4 To open the PLC Ladder Library, at the MATLAB command line, enter:

plcladderlib
5 Drag the Custom Instruction block from plcladderlib to your user-defined library

plcuserlib.slx.
6 Double-click the Custom Instruction block to open the Block Parameters.
7 Specify the Instruction Name as SQR. Check that the Number of Inputs is 1 and Input Types

is specified as a cell array of allowed data types. Similarly, check that the Number of Outputs is
1 and Output Types is specified as a cell array of allowed data types. Click OK.

8 Click in the SQR block and double-click the Instruction_Enable subsystem.

 Create Custom Instruction in PLC Ladder Diagram Models

3-45

9 Inside the Instruction_Enable subsystem, add a Sqrt block from the Simulink / Math Operations
Library. Double-click this block and select signedSqrt from Main>Function, and then click
OK.

10 Connect the input and output ports to the input and output ports of Sqrt block by using Data
Type Conversion blocks.

11 Navigate to the top level of the library. Click Lock Links and Unlock Library in the Library tab,
and then save the library. Simulink PLC Coder can now use the SQR instruction when
plcuserlib.slx is on the MATLAB path. You can drag this instruction to your models from the
library that you have created and saved.

12 To verify if Simulink PLC Coder has identified the newly created instruction, at the MATLAB
command line, enter:

plcladderinstructions

This command lists the instructions that Simulink PLC Coder can use. The supported instructions
displayed in the output includes the SQR instruction.

The example in the image shows the use of the SQR instruction inside an Add-On Instruction
block.

3 Generating Ladder Diagram

3-46

Limitations
The Custom Instruction block does not support instructions:

• With data type array and struct (composite) as arguments.
• That require internal data storage (states).

See Also
Custom Instruction | plcimportladder | plcladderinstructions | plcladderlib

More About
• “Supported Features in Ladder Diagram” on page 3-20
• “Import L5X Ladder Files into Simulink” on page 3-22
• “Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27
• “Generating Ladder Diagram Code from Simulink” on page 3-34

 Create Custom Instruction in PLC Ladder Diagram Models

3-47

Generating Test Bench Code

• “Test Bench Verification” on page 4-2
• “Integrate Generated Code with Custom Code” on page 4-3
• “Import and Verify Structured Text Code” on page 4-4
• “Generate Code That Has Multiple Test Benches” on page 4-6

4

Test Bench Verification
The Simulink PLC Coder software simulates your model and captures the input and output signals for
a subsystem. The captured input and output signal data is the test bench data. You can generate a
test bench or test harness by using the test bench data. See “Generate Testbench for Subsystem” on
page 13-7.

You can verify that the output of the generated code is numerically and functionally equivalent to the
output of the Simulink model by using the generated test bench. This table shows the error tolerance
for the different data types. The comparison is between the outputs of the generated code (expected
values) and outputs of the model (actual values).

Data Type Comparison Error Tolerance
integer absolute 0
boolean absolute 0
single relative 0.0001
double relative 0.00001

The relative tolerance comparison for single or double data types uses this logic:
IF ABS(actual_value - expected_value) > (ERROR_TOLERANCE * expected_value) THEN
 testVerify := FALSE;
END_IF;

To verify the generated code by using the test bench, import the generated structured text and the
test bench data into your target IDE. You can import test bench code either manually or
automatically. See “Import and Verify Structured Text Code” on page 4-4.

See Also

See Also

Related Examples
• “Generate Code That Has Multiple Test Benches” on page 4-6

4 Generating Test Bench Code

4-2

Integrate Generated Code with Custom Code
For the top-level subsystem that has internal state, the generated FUNCTION_BLOCK code has
ssMethodType. ssMethodType is a special input argument that the coder adds to the input
variables section of the FUNCTION_BLOCK section during code generation. ssMethodType enables
you to execute code for Simulink Subsystem block methods such as initialization and computation
steps. The generated code executes the associated CASE statement based on the value passed in for
this argument.

To use ssMethodType with a FUNCTION_BLOCK for your model, in the generated code, the top-level
subsystem function block prototype has one of the following formats:

Has Internal State ssMethodType Contains...
Yes The generated function block for the block has an extra first parameter

ssMethodType of integer type. This extra parameter is in addition to the
function block I/O parameters mapped from Simulink block I/O ports. To use
the function block, first initialize the block by calling the function block with
ssMethodType set to integer constant SS_INITIALIZE. If the IDE does not
support symbolic constants, set ssMethodType to integer value 0. For each
follow-up invocation, call the function block with ssMethodType set to
constant SS_STEP. If the IDE does not support symbolic constants, set
ssMethodType to integer value 1. These settings cause the function block to
initialize or compute and return output for each time step. If you select Keep
top level ssMethod name same as non-top level, the
ssMethodType SS_STEP will be generated as SS_OUTPUT with integer value
3.

No The function block interface only has parameters mapped from Simulink block
I/O ports. There is no ssMethodType parameter. To use the function block in
this case, call the function block with I/O arguments.

For non top-level subsystems, in the generated code, the subsystem function block prototype has one
of the following formats:

Has Internal State ssMethodType Contains...
Yes The function block interface has the ssMethodType parameter. The generated

code might have SS_INITIALIZE, SS_OUTPUT, or other ssMethodType
constants to implement Simulink semantics.

If non top-level subsystems have blocks with constant sample time the
generated code could have SS_CONST_CODE constants to implement Simulink
semantics.

No The function block interface only has parameters mapped from Simulink block
I/O ports. There is no ssMethodType parameter.

 Integrate Generated Code with Custom Code

4-3

Import and Verify Structured Text Code
Generate structured text code and test bench from your model. Verify the generated code by
importing the generated code and test bench into your target IDE. You can verify that the output of
the generated code matches the output of the model simulation by using the test bench data.

Generate, Import, and Verify Structured Text
This example shows how to import and verify your generated code by using the generated test bench:

1 Open the plcdemo_simple_subsystem example.
2 Open the PLC Coder app. Click the PLC Code tab > Settings > PLC Code Generation.
3 Select the Generate testbench for subsystem check box. Click OK.
4 Click the PLC Code tab. Click Settings > Verify Code in IDE.
5 In the PLC Code tab, click Generate PLC Code.

When you select Verify Code in IDE, the software:

1 Generates the code and test bench.
2 Starts the target IDE.
3 Creates a project.
4 Imports the generated code and test bench to the new project in the target IDE.
5 Runs the generated code on the target IDE to verify it.

If you do not specify that the test bench code must be generated, when you verify the generated code,
you see the error Testbench not selected.

For information on:

• IDEs not supported for automatic import and verification, see “Troubleshoot Automatic Import
Issues” on page 1-18.

• Possible reasons for long code generation time, see “Troubleshooting: Long Test Bench Code
Generation Time” on page 4-4.

Troubleshooting: Long Test Bench Code Generation Time
When generating code that has a testbench and the test bench data size exceeds the limit that
Simulink PLC Coder can handle, it might result in long code generation times. The test bench data
size depends on the number of times the input signal is sampled during simulation. When the
simulation time is long or the simulation signals are sampled at a high frequency, the test bench data
can be large.

To reduce test bench data size and code generation time, you can:

• Reduce the duration of the simulation.
• Increase the simulation step size.
• If you want to retain the simulation duration and the step size, divide the simulation into multiple

parts. For a simulation input signal that have the duration [0, t], divide the input into multiple
parts with durations [0, t1], [t1, t2], [t2, t3], and so on, where t1 < t2 < t3 < .. < t.

4 Generating Test Bench Code

4-4

Generate test bench code for each part separately and manually import them together to your
IDE.

See Also

Related Examples
• “Generate Code That Has Multiple Test Benches” on page 4-6

 Import and Verify Structured Text Code

4-5

Generate Code That Has Multiple Test Benches
You can generate code that has multiple test benches from your subsystem. For the generated code to
have multiple test benches, the input to your subsystem must consist of multiple signal groups.

To generate multiple test benches for your subsystem:

1 Provide multiple signal groups as inputs by using a Signal Builder block that has multiple signal
groups.

Use Simulink Design Verifier to create a test harness model from the subsystem. In the test
harness model, a Signal Builder block that has one or more signal groups provides input to the
subsystem. Use this Signal Builder block to provide inputs to your subsystem. If your model is
complex, Simulink Design Verifier can create a large number of signal groups. See
“Troubleshooting: Test Data Exceeds Target Data Size” on page 4-7.

To create your Signal Builder block:

a Right-click the subsystem and select Design Verifier > Generate Tests for Subsystem.
b In the Simulink Design Verifier Results Summary window, select Create harness model.

c Open the Inputs block in the test harness model. The Inputs block is a Signal Builder block
that can have one or more signal groups.

In the Signal Builder window, make sure that more than one signal group is available in the
Active Group drop-down list.

4 Generating Test Bench Code

4-6

d Copy the Signal Builder block from the test harness mode. Use this block to provide inputs to
your original subsystem.

2 Generate test benches for the subsystem:

a Open the PLC Coder app. Click PLC Code tab > Settings > PLC Code Generation.
b Select the Generate testbench for subsystem option.

3 Open your model and open the PLC Coder App. Click Settings, and then select Verify Code in
IDE.

In your target IDE, you can see multiple test benches. Each test bench corresponds to a signal
group.

Troubleshooting: Test Data Exceeds Target Data Size
If the test data from the multiple signal groups exceeds the maximum data size on your target, you
can encounter compilation errors. If you encounter compilation errors when generating multiple test
benches, try one of the following:

• Reduce the number of signal groups in the Signal Builder block and regenerate the test benches.

 Generate Code That Has Multiple Test Benches

4-7

• Increase the simulation step size for the subsystem.

Limitations
When you are switching between signal groups, the model simulation time must remain the same for
the entire simulation. Do not change the model simulation time.

See Also

Related Examples
• “Import and Verify Structured Text Code” on page 4-4

4 Generating Test Bench Code

4-8

Code Generation Reports

• “Information in Code Generation Reports” on page 5-2
• “Create Code Generation Report” on page 5-4
• “Model Web View in Code Generation Report” on page 5-7
• “Generate Static Code Metrics Report” on page 5-11
• “Working with the Static Code Metrics Report” on page 5-14
• “View Requirements Links from Generated Code” on page 5-16

5

Information in Code Generation Reports
The coder creates and displays a Traceability Report file when you select one or more of these
options:

GUI Option Command-Line Property Description
Generate
traceability
report

PLC_GenerateReport Specify whether to create code
generation report.

Generate
model web view

PLC_GenerateWebview Include the model web view in the code
generation report to navigate between
the code and model within the same
window. You can share your model and
generated code outside of the MATLAB
environment.

In the Configuration Parameters dialog box, in the Report panel, you see these options.

Note You must have a Simulink Report Generator™ license to generate traceability reports.

The coder provides the traceability report to help you navigate more easily between the generated
code and your source model. When you enable code generation report, the coder creates and displays
an HTML code generation report. You can generate reports from the Configuration Parameters dialog
box or the command line. Traceability report generation is disabled when generating Ladder
Diagrams from Stateflow chart. See “Traceability Report Limitations” on page 13-32 . A typical
traceability report looks something like this figure:

5 Code Generation Reports

5-2

 Information in Code Generation Reports

5-3

Create Code Generation Report

In this section...
“Generate a Traceability Report” on page 5-4
“Limitation” on page 5-6

Generate a Traceability Report
Generate a Simulink PLC Coder code generation report by using the Configuration Parameters dialog
box:

1 Verify that the model is open.
2 Open the PLC Coder app. Click the PLC Code tab.
3 Click Settings and navigate to the PLC Code Generation pane.
4 To enable report generation, select the Report > Generate traceability report check box.
5 To open the code generation report upon completion of code generation, select the Report>

Open report automatically check box. Click OK.

6 Click Generate PLC Code to initiate code and report generation. The coder generates HTML
report files as part of the code generation process. THE HTML report opens.

5 Code Generation Reports

5-4

• The Traceability Report section enables you to account for Eliminated / Virtual Blocks that
are untraceable, versus the listed Traceable Simulink Blocks / Stateflow Objects / MATLAB
Scripts, providing a complete mapping between model elements and code.

• The Static Code Metrics Report section provides generated code statistics. Metrics are
estimated from static analysis of the generated code.

In the Generated Files section, you can click the names of source code files generated from your
model to view their contents in a MATLAB web browser window. In the displayed source code:

• Global variable instances are hyperlinked to their definitions.
• You can use the hyperlinks within the displayed source code to view the blocks or subsystems

from which the code was generated. Click the hyperlinks to view the relevant blocks or
subsystems in a Simulink model window.

• You can view the generated code for a block in the model. To highlight a block's generated code in
the HTML report, click the block and in the PLC Coder app, REVIEW RESULTS pane, click
Navigate to Code.

For more information, see:

• “Trace Simulink Model Elements in Generated Code” on page 6-8
• “Trace Stateflow Elements in Generated Code” on page 6-11

 Create Code Generation Report

5-5

Limitation
If you generate a code generation report for a model, and then change the model, the report becomes
invalid. To keep your code generation report current, after modifying the source model, regenerate
code and the report. If you close and then reopen a model, regenerate the report.

5 Code Generation Reports

5-6

Model Web View in Code Generation Report

Model Web Views
To review and analyze the generated code, it is helpful to navigate between the code and model. You
can include a web view of the model within the HTML code generation report. You can then share
your model and generated code outside of the MATLAB environment. You must have a Simulink
Report Generator license to include a Web view (Simulink Report Generator) of the model in the code
generation report.

Browser Requirements for Web Views
Web views require a web browser that supports Scalable Vector Graphics (SVG). Web views use SVG
to render and navigate models.

You can use these web browsers:

• Mozilla® Firefox® Version 1.5 or later, which has native support for SVG. To download the Firefox
browser, go to https://www.mozilla.org/en-US/firefox/.

• Apple Safari
• Microsoft® Internet Explorer® that has Adobe® SVG Viewer plugin. To download the Adobe SVG

Viewer plugin, go to www.adobe.com/devnet/svg/.

Note Web views do not support Microsoft Internet Explorer 9.

Generate HTML Code Generation Report with Model Web View
This example shows how to create an HTML code generation report that includes a web view of the
model diagram.

1 Open the plcdemo_simple_subsystem model.
2 Open the PLC Coder app. Click the PLC Code tab.
3 Click Settings and navigate to the Code Generation pane.
4 To enable report generation, select the Report>Generate traceability report check box.
5 To enable model web view, select the Report > Generate model web view check box.
6 Click OK.

 Model Web View in Code Generation Report

5-7

https://www.mozilla.org/en-US/firefox/
https://www.adobe.com/svg/

7 On the PLC Code tab, click Generate PLC Code to initiate code and report generation. The
code generation report for the top model opens in a MATLAB web browser.

8 In the left navigation pane, select a source code file. The corresponding traceable source code is
displayed in the right pane and includes hyperlinks.

5 Code Generation Reports

5-8

9

10 Click a hyperlink in the code. The model web view displays and highlights the corresponding
block in the model.

11 To go back to the code generation report for the top model, at the top of the left navigation pane,
click the Back button until the report for the top model is displayed.

For more information about navigating between the generated code and the model diagram, see
“Trace Simulink Model Elements in Generated Code” on page 6-8.

Model Web View Limitations
When you are using the model web view, the HTML code generation report has these limitations:

• Code is not generated for virtual blocks. In the model web view, if you click a virtual block, the
code generation report clears highlighting in the source code files.

• Stateflow truth tables, events, and links to library charts are not supported.
• Searching in the code generation report does not find or highlight text.
• In a subsystem build, the traceability hyperlinks of the root-level inports and outports blocks are

disabled.

 Model Web View in Code Generation Report

5-9

• If you navigate from the actual model diagram (not the model web view in the report), to the
source code in the HTML code generation report, the model web view is disabled and not visible.
To enable the model web view, open the report again, “Open Code Generation Report” (Simulink
Coder).

5 Code Generation Reports

5-10

Generate Static Code Metrics Report
The Static Code Metrics report is a section included in the HTML code generation report. The report
provides generated code statistics. The report is generated when you select Generate Traceability
Report in the Configuration Parameters dialog box. You can use the Static Code Metrics Report to
evaluate the generated PLC code before implementation in your IDE. You can use information in the
report to:

• Find the number of files and lines of code in each file.
• Estimate the number of lines of code and stack usage per function.

For more information, see “Working with the Static Code Metrics Report” on page 5-14.

This example shows how to generate a code generation report that contains the Static Code Metrics
section.

1 Open the AirportConveyorBeltControlSystemExample.

openExample('plccoder/AirportConveyorBeltControlSystemExample')

Select the Controller subsystem.
2 Open the PLC Coder app. Click the PLC Code tab.
3 Click Settings and navigate to the Code Generation pane.
4 To enable report generation, select Report > Generate traceability report.
5 Click OK.

 Generate Static Code Metrics Report

5-11

6 Click Generate PLC Code to initiate code and report generation. The code generation report for
the top model opens in a MATLAB web browser.

7 On the left navigation pane, in the Contents section, select Code Metrics report.

8 To see the generated files and how many lines of code are generated for each file, look at the File
Information section.

9 To view the global constants in their generated code and their size, see the Global Constants
section.

5 Code Generation Reports

5-12

10 To view the function metrics such as stack size, number of inputs, and number of outputs, see the
Function Block Information section.

 Generate Static Code Metrics Report

5-13

Working with the Static Code Metrics Report
In this section...
“Workflow for Static Code Metrics Report” on page 5-14
“Report Contents” on page 5-14
“Function Block Information” on page 5-15

You can use the information in the Static Code Metrics Report to assess the generated code and make
model changes before code implementation in your target IDE.

Before starting, familiarize yourself with potential code limitations of your IDE. For example, some
IDEs have limits on the number of variables or lines of code in a function block.

For detailed instructions on generating the report, see “Generate Static Code Metrics Report” on
page 5-11.

Workflow for Static Code Metrics Report
This workflow is the basic workflow for using the Static Code Metrics Report with your model.

Report Contents
The Static Code Metrics Report is divided into these sections:

5 Code Generation Reports

5-14

• File Information: Reports high-level information about generated files, such as lines and lines of
code.

• Global Variables: Reports information about global variables defined in the generated code.
• Global Constants: Reports information about global constants defined in the generated code.
• Function Block Information: Reports a table of metrics for each function block generated from

your model.

Function Block Information
You can use the information in the Function Block Information table to assess the generated code
before implementation in your IDE. The leftmost column of the table lists function blocks with
hyperlinks. Clicking a function block name leads you to the function block location in the generated
code. You can then trace from the code to the model. For more information, see “Verify Generated
Code by Using Code Tracing” on page 6-2.

 Working with the Static Code Metrics Report

5-15

View Requirements Links from Generated Code
For requirements reviews, design reviews, traceability analysis, or project documentation, you can
create links to requirements documents from your model with the Simulink Requirements™ software.
If your model has links to requirements documents, you can also view the links from the generated
code.

Note The requirement links must be associated with a model object. If requirements links are
associated with the code in a MATLAB Function block, they do not appear in generated code
comments.

To view requirements from generated code:

1 From your model, create links to requirements documents.

See, “Requirements Management Interface” (Simulink Requirements).
2 For the subsystem for which you want to generate code, specify the following configuration

parameters.

Option Purpose
Include comments on page 13-13 Model information must appear in code

comments.
Generate traceability report on page 13-32 After code is generated, a Code Generation

Report must be produced.
3 Generate code.

The code generation report opens. The links to requirements documents appear in generated
code comments. When you view the code in the code generation report, you can open the links
from the comments.

5 Code Generation Reports

5-16

Code Traceability

• “Verify Generated Code by Using Code Tracing” on page 6-2
• “Trace Simulink Model Elements in Generated Code” on page 6-8
• “Trace Stateflow Elements in Generated Code” on page 6-11

6

Verify Generated Code by Using Code Tracing
In this section...
“Traceable Elements” on page 6-2
“Traceability in Generated Code” on page 6-3
“Traceability Tags” on page 6-5
“Operator Traceability” on page 6-5
“Generate a Traceability Report from the Command Line” on page 6-6
“Traceability Limitations” on page 6-6

Code tracing (traceability) uses hyperlinks to navigate between a line of generated code and its
corresponding elements in a model. To find the lines of code and their corresponding elements, you
can use the PLC Coder App Navigate To Code on an element in the model. This two-way navigation
is bidirectional traceability.

Using code tracing, you can:

• Verify that the generated code is as you expect. You can identify which model elements correspond
to a line of code. You can track code from different elements that you have or have not reviewed.

• Verify that generated code meets design requirements. You can link requirements to model
elements and use code tracing to verify that the generated code for a model element meets the
design requirements.

When you generate code from a Simulink model, traceability information is embedded in the
generated code, unless explicitly unspecified. The traceability information includes links for tracing
between the generated source code and the model. You can view the generated code by using the
code generation report.

The generated code includes these resources that support code tracing:

• Code element hyperlinks (indicated by underlining when you place your cursor over the code) to
trace variables or types in the generated code to their declarations or definitions.

• Tags in code comments that identify elements in a model from which lines of code are generated.
• Line number hyperlinks that link to the model component from which the line of code was

generated.

Traceable Elements
Bidirectional traceability is supported for Simulink blocks and these Stateflow elements:

• States
• Transitions
• State transition tables
• MATLAB functions. Traceability is not supported for external code that you call from a MATLAB

function.
• Truth table blocks
• Graphical functions

6 Code Traceability

6-2

• Simulink functions

Traceability in one direction is supported for these Stateflow elements:

• Events (code-to-model)

Code-to-model traceability works for explicit events, but not implicit events. Clicking a hyperlink
for an explicit event in the generated code highlights that item in the Contents pane of the Model
Explorer.

• Junctions (model-to-code)

Model-to-code traceability works for junctions with at least one outgoing transition. Right-clicking
such a junction in the Stateflow Editor highlights the line of code that corresponds to the first
outgoing transition for that junction.

For more information, see

Traceability in Generated Code
This example shows how to verify generated code by using the code generation report.

1 Open the example GeneratingStructuredTextForAFeedForwardPIDControllerExample.
openExample('plccoder/GeneratingStructuredTextForAFeedforwardPIDControllerExample')

2 Open the PLC Coder app. Click the PLC Code tab.
3 Click Settings and navigate to the Code Generation pane.
4 To enable report generation, select Report > Generate traceability report.
5 Click OK.

 Verify Generated Code by Using Code Tracing

6-3

6 Click Generate PLC Code to initiate code and report generation. The code generation report for
the top model opens in a MATLAB web browser.

7 In the left navigation pane, select the plcdemo_pid_feedforward.exp file.
8 Click a comment or line number hyperlink. The Simulink Editor displays and highlights the

corresponding block in the model.

6 Code Traceability

6-4

9 To highlight the generated code for a block in the model, select the block and in the PLC Coder
tab, click Navigate to Code. The generated code for the block is highlighted in the HTML code
generation report.

10 In the left navigation pane, you can click the Back button to go back to the previous code
generation report.

Traceability Tags
A traceability tag appears in a comment above the corresponding line of generated code. The format
of the tag is <system>/block_name .

• system is a unique number assigned by the Simulink engine.
• block_name is the name of the source block.

This code shows a tag comment above the generated line of code. A Sum block within a subsystem
one level below the root level of the source model generates this code:

(* Sum: '<S1>/Sum' *)
rtb_Sum := In1 - In2;

Operator Traceability
The generated code provides traceability between operators in the generated code and Simulink
blocks, Stateflow elements, or MATLAB Function blocks.

To verify the generated code by using operator traceability, in the generated code, click an operator
hyperlink to highlight the source block in the model.

These operators are supported.

Operator Type Operators
Arithmetic +, -, *, /, %

+=, -=, *=, /=, %=
++, -- (prefix and postfix)

Logical !, &&, ||
Relational ==, !=, <, >, <=, >=
Bit ~, |, ^, &, >>, <<

&=, ^=, |=, <<=, >>=
Conditional ?:

These operators are not supported.

Operator Type Operator Examples
Assignment operator =
Member of and pointer operators Array subscript: a[b]

Address of and pointer dereference: &a, *a
Member of: a.b, a->b

 Verify Generated Code by Using Code Tracing

6-5

Operator Type Operator Examples
Other operators Parenthesis in function call: foo(a,b)

Comma: a, b
Scope resolution: a::b
Cast: type(a)
new, new[]
delete, delete[]

Generate a Traceability Report from the Command Line
To generate a Simulink PLC Coder code generation report from the command-line code for the
subsystem plcdemo_simple_subsystem/SimpleSubsystem:

1 Open a Simulink PLC Coder model, for example:

open_system('plcdemo_simple_subsystem');
2 Enable the code generation parameter PLC_GenerateReport. To view the output in the model

web view, also enable PLC_GenerateWebview:
set_param('plcdemo_simple_subsystem', 'PLC_GenerateReport', 'on');
set_param('plcdemo_simple_subsystem', 'PLC_GenerateWebView', 'on');

3 Generate the code.
generatedfiles = plcgeneratecode('plcdemo_simple_subsystem/SimpleSubsystem')

A traceability report is displayed. In your model, a View diagnostics hyperlink appears at the
bottom of the model window. Click this hyperlink to open the Diagnostic Viewer window.

If the model web view is also enabled, that view is displayed.

Traceability Limitations
These limitations apply to reports generated by Embedded Coder® software:

• Under the following conditions, model-to-code traceability is disabled for a block if the block name
contains:

• A single quote (').
• An asterisk (*) that causes a name-mangling ambiguity relative to other names in the model.

This name-mangling ambiguity occurs if in a block name or at the end of a block name, an
asterisk precedes or follows a slash (/).

• The character ÿ (char(255)).
• If a block name contains a newline character (\n), the generated code comment for the block path

hyperlink replaces the newline character with a space for readability.
• You cannot trace blocks representing these types of subsystems to generated code:

• Virtual subsystems
• Masked subsystems
• Nonvirtual subsystems for which code has been removed due to optimization

6 Code Traceability

6-6

If you cannot trace a subsystem at subsystem level, you can trace individual blocks within the
subsystem.

• If you open a model on a platform that is different from the platform used to generate code, you
cannot use model-to-code and code-to-model traceability.

• Inline traceability is not available for files that are generated in shared_utils folder.

See Also

More About
• “Trace Simulink Model Elements in Generated Code” on page 6-8
• “Trace Stateflow Elements in Generated Code” on page 6-11

 Verify Generated Code by Using Code Tracing

6-7

Trace Simulink Model Elements in Generated Code
To verify the generated code, Simulink PLC Coder provides bidirectional traceability between the
Simulink model and the generated code. For traceability, you can use either method:

• Code-to-model: In comment lines in the generated code, the generated code displays these
hyperlinks:

• Block/subsystems names
• Line numbers
• Operators

To highlight the corresponding block or subsystem in the Simulink Editor, click the hyperlinks.
• Model-to-code: You can select a single block of a model in the Simulink Editor and navigate to the

corresponding generated code.

Code-To-Model Traceability
This example shows how to use hyperlinks for tracing code-to-model elements:

1 Open the example GeneratingStructuredTextForAFeedForwardPIDControllerExample.
openExample('plccoder/GeneratingStructuredTextForAFeedforwardPIDControllerExample')

2 Open the PLC Coder app. Click the PLC Code tab.
3 Click Settings and navigate to the Code Generation pane.
4 To enable report generation, select Report > Generate traceability report.
5 Click OK.

6 Code Traceability

6-8

6 Click Generate PLC Code to initiate code and report generation. The code generation report for
the top model opens in a MATLAB web browser.

7 In the left navigation pane, select the plcdemo_pid_feedforward.exp file.
8 Click the hyperlink on line 73. In the model window, the corresponding Sum block is highlighted.

Model-to-Code Traceability
This example shows how to trace model elements to their corresponding generated code:

1 Open the example GeneratingStructuredTextForAFeedForwardPIDControllerExample.
openExample('plccoder/GeneratingStructuredTextForAFeedforwardPIDControllerExample')

2 Open the PLC Coder app. Click the PLC Code tab.
3 Click Settings and navigate to the Code Generation pane.

 Trace Simulink Model Elements in Generated Code

6-9

4 To enable report generation, select Report > Generate traceability report.
5 Click OK.
6 Click Generate PLC Code to initiate code and report generation. The code generation report for

the top model opens in a MATLAB web browser.
7 Select the highlighted Sum block in the image,and in the PLC Coder tab, click Navigate to

Code. The generate code for the block is highlighted in the HTML code generation report.

See Also

More About
• “Verify Generated Code by Using Code Tracing” on page 6-2
• “Trace Stateflow Elements in Generated Code” on page 6-11

6 Code Traceability

6-10

Trace Stateflow Elements in Generated Code
To verify the generated code for your Stateflow elements, you can trace Stateflow elements in your
model to the generated code by using these types of navigation:

• Code-to-model: Trace generated code back to the model by clicking hyperlinks in the comments or
the hyperlinked line numbers, which highlights the corresponding model element in the Simulink
Editor.

• Model-to-code: Trace the model elements in the Simulink Editor to corresponding lines in
generated code by right-clicking the model element and navigating to the generated code. This
traceability is not supported for some Stateflow elements in Code view.

Inline Traceability for Stateflow Elements
Inline traceability refers to the line-level traceability available in the generated code. You can click
the hyperlinked line numbers to trace the corresponding Stateflow elements.

This example shows how to use hyperlinks for tracing code-to-Stateflow elements:

1 Open the example AirportConveyorBeltControlSystemExample.
openExample('plccoder/AirportConveyorBeltControlSystemExample')

2 Open the PLC Coder app. Click the PLC Code tab.
3 Click Settings and navigate to the Code Generation pane.
4 To enable report generation, select Report > Generate traceability report.
5 Click OK.

 Trace Stateflow Elements in Generated Code

6-11

6 Click Generate PLC Code to initiate code and report generation. The code generation report for
the top model opens in a MATLAB web browser.

7 In the left navigation pane, select the plcdemo_airport_conveyor.exp file.
8 Click the hyperlink on line 65. In the Stateflow chart, the corresponding Stop_F1 state is

highlighted.

Trace States and Transitions to Code
This example shows how to trace Stateflow states and transitions to the generated code:

1 Open the example AirportConveyorBeltControlSystemExample.
openExample('plccoder/AirportConveyorBeltControlSystemExample')

6 Code Traceability

6-12

2 Open the PLC Coder app. Click the PLC Code tab.
3 Click Settings and navigate to the Code Generation pane.
4 To enable report generation, select Report > Generate traceability report.
5 Click OK.
6 Click Generate PLC Code to initiate code and report generation. The code generation report for

the top model opens in a MATLAB web browser.
7 In the Controller subsystem, Control block, select the Run_F1 state. In the PLC Coder tab,

click Navigate to Code. The generated code for the state is highlighted in the HTML code
generation report.

See Also

More About
• “Trace Simulink Model Elements in Generated Code” on page 6-8
• “Verify Generated Code by Using Code Tracing” on page 6-2

 Trace Stateflow Elements in Generated Code

6-13

Working with Tunable Parameters in the
Simulink PLC Coder Environment

• “Block Parameters in Generated Code” on page 7-2
• “Control Appearance of Block Parameters in Generated Code” on page 7-4

7

Block Parameters in Generated Code
To control how the block parameters appear in the generated code, you can either define the
parameters as Simulink.Parameter objects in the MATLAB workspace or use the Model Parameter
Configuration dialog box. For more information, see “Control Appearance of Block Parameters in
Generated Code” on page 7-4.

Simulink PLC Coder exports tunable parameters as exported symbols and preserves the names of
these parameters in the generated code. It does not mangle these names. As a result, if you use a
reserved IDE keyword as a tunable parameter name, the code generation can cause compilation
errors in the IDE. As a best practice, do not use IDE keywords as tunable parameter names.

The coder maps tunable parameters in the generated code as listed in the following table:

Target IDE Parameter Storage Class
Model default ExportedGlobal ImportedExtern Imported‐

ExternPointer
CoDeSys 2.3 Local function block

variables
Global variable Variable is not defined

in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

CoDeSys 3.3 Local function block
variables

Global variable Variable is not defined
in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

CoDeSys 3.5 Local function block
variables

Global variable Variable is not defined
in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

B&R Automation
Studio 3.0

Local function block
variable

Local function block
variable

Local function block
variable.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

B&R Automation
Studio 4.0

Local function block
variable

Local function block
variable

Local function block
variable.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern

Beckhoff
TwinCAT 2.11

Local function block
variable

Global variable Variable is not defined
in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

7 Working with Tunable Parameters in the Simulink PLC Coder Environment

7-2

Target IDE Parameter Storage Class
Model default ExportedGlobal ImportedExtern Imported‐

ExternPointer
KW-Software
MULTIPROG 5.0

Local function block
variable

Local function block
variable

Local function block
variable.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

Phoenix Contact
PC WORX 6.0

Local function block
variable

Global variable Variable is not defined
in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

RSLogix 5000 17,
18: AOI

AOI local tags AOI input tags AOI input tags. Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

RSLogix 5000 17,
18: Routine

Instance fields of
program UDT tags

Program tags Variable is not defined
in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

Siemens SIMATIC
STEP 7

Local function block
variable

Global variable Variable is not defined
in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

Siemens TIA
Portal

Local function block
variable

Global variable Variable is not defined
in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern

Generic Local function block
variable

Global variable Variable is not defined
in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

PLCopen Local function block
variable

Global variable Variable is not defined
in generated code and
expected to be defined
externally.

Ignored. If you set the
parameter to this
value, the software
treats it the same as
ImportedExtern.

 Block Parameters in Generated Code

7-3

Control Appearance of Block Parameters in Generated Code
Unless you use constants for block parameters in your model, they appear in the generated code as
variables. You can choose how these variables appear in the generated code. For more information,
see “Block Parameters in Generated Code” on page 7-2.

To control how the block parameters appear in the generated code:

1 Use variables instead of constants for block parameters.
2 Define these parameters in the MATLAB workspace in one of the following ways:

• Use a MATLAB script to create a Simulink.Parameter object. Run the script every time
that the model loads.

Simulink stores Simulink.Parameter objects outside the model. You can then share
Simulink.Parameter objects between multiple models.

• Use the Model Configuration Parameters dialog box to make the parameters tunable.

Simulink stores global tunable parameters specified using the Configuration Parameters
dialog box with the model. You cannot share these parameters between multiple models.

Note The MATLAB workspace parameter value must be of the same data type as used in the
model. Otherwise, the value of the variable in the generated code is set to zero. See “Workspace
Parameter Data Type Limitations” on page 19-4.

Configure Tunable Parameters with Simulink.Parameter Objects
This example shows how to create and modify a Simulink.Parameter object.

The model plcdemo_tunable_params_slparamobj illustrates these steps. The model contains a
Subsystem block SimpleSubsystem that has three Gain blocks with tunable parameters, K1, K2, and
K3.

1 Write a MATLAB script that defines the tunable parameters.

The following script setup_tunable_params.m creates the constants K1, K2, and K3 as
Simulink.Parameter objects, assigns values, and sets the storage classes for these constants.
For more information on the storage classes, see “Block Parameters in Generated Code” on page
7-2.

% tunable parameter mapped to local variable
K1 = Simulink.Parameter;
K1.Value = 0.1;
K1.CoderInfo.StorageClass = 'Model default';

% tunable parameter mapped to global variable
K2 = Simulink.Parameter;
K2.Value = 0.2;
K2.CoderInfo.StorageClass = 'ExportedGlobal';

% tunable parameter mapped to global const
K3 = Simulink.Parameter;
K3.Value = 0.3;

7 Working with Tunable Parameters in the Simulink PLC Coder Environment

7-4

K3.CoderInfo.StorageClass = 'Custom';
K3.CoderInfo.CustomStorageClass = 'Const';

2 Specify that the script setup_tunable_params.m must execute before the model loads and
that the MATLAB workspace must be cleared before the model closes.

a In the model window, go to the Modeling tab and select Model Properties from the Model
Settings drop-down.

b In the Model Properties dialog box, on the Callbacks tab, select PreLoadFcn. Enter
setup_tunable_params for Model pre-load function.

c On the Callbacks tab, select CloseFcn. Enter clear K1 K2 K3; for Model close
function.

Every time that you open the model, the variables K1, K2, and K3 are loaded into the base
workspace. You can view the variables and their storage classes in the Model Explorer.

3 Generate code and inspect it.

 Control Appearance of Block Parameters in Generated Code

7-5

Variable Storage Class Generated Code (3S CoDeSys 2.3)
K1 Model default K1 is a local function block variable.

FUNCTION_BLOCK SimpleSubsystem
.
.
VAR
 K1: LREAL := 0.1;
 .
 .
END_VAR
.
.
END_FUNCTION_BLOCK

K2 ExportedGlobal K2 is a global variable.

VAR_GLOBAL
 K2: LREAL := 0.2;
END_VAR

K3 CoderInfo.CustomStorageClass set
to Const.

K3 is a global constant.

VAR_GLOBAL CONSTANT
 SS_INITIALIZE: SINT := 0;
 K3: LREAL := 0.3;
 SS_STEP: SINT := 1;
END_VAR

Make Parameters Tunable Using Configuration Parameters Dialog Box
This example shows how to make parameters tunable using the Model Configuration Parameters
dialog box.

The model plcdemo_tunable_params illustrates these steps. The model contains a Subsystem
block SimpleSubsystem that has three Gain blocks with tunable parameters, K1, K2, and K3.

1 Specify that the variables K1, K2, and K3 must be initialized before the model loads and that the
MATLAB workspace must be cleared before the model closes.

a In the Modeling tab and select Model Properties from the Model Settings drop-down.
b In the Model Properties dialog box, on the Callbacks tab, select PreLoadFcn. Enter

K1=0.1; K2=0.2; K3=0.3; for Model pre-load function.
c On the Callbacks tab, select CloseFcn. Enter clear K1 K2 K3; for Model close

function.
2 On the Modeling tab and select Model Settings to open the Configuration Parameters dialog

box.
3 Navigate to Optimization pane. Specify that all parameters must be inlined in the generated

code. Select Inlined for Default Parameter Behavior.
4 To override the inlining and make individual parameters tunable, click Configure. In the Model

Parameter Configuration dialog box, from the Source list, select Referenced workspace
variables.

5 Ctrl+select the parameters and click Add to table >>.

7 Working with Tunable Parameters in the Simulink PLC Coder Environment

7-6

By default, this dialog box sets all parameters to the SimulinkGlobal storage class. Set the
Storage class and Storage type qualifier as shown in this figure. For more information on the
storage classes, see “Block Parameters in Generated Code” on page 7-2.

6 Generate code and inspect it.

Variable Storage Class Generated Code (3S CoDeSys 2.3)
K1 Model default K1 is a local function block variable.

FUNCTION_BLOCK SimpleSubsystem
.
.
VAR
 K1: LREAL := 0.1;
 .
 .
END_VAR
.
.
END_FUNCTION_BLOCK

 Control Appearance of Block Parameters in Generated Code

7-7

Variable Storage Class Generated Code (3S CoDeSys 2.3)
K2 ExportedGlobal K2 is a global variable.

VAR_GLOBAL
 K2: LREAL := 0.2;
END_VAR

K3 CoderInfo.CustomStorageC
lass and Storage type
qualifier set to Const.

K3 is a global constant.

VAR_GLOBAL CONSTANT
 SS_INITIALIZE: SINT := 0;
 K3: LREAL := 0.3;
 SS_STEP: SINT := 1;
END_VAR

7 Working with Tunable Parameters in the Simulink PLC Coder Environment

7-8

Controlling Generated Code Partitions

• “Generate Global Variables from Signals in Model” on page 8-2
• “Control Code Partitions for Subsystem Block” on page 8-3
• “Control Code Partitions for MATLAB Functions in Stateflow Charts” on page 8-8

8

Generate Global Variables from Signals in Model
If you want to generate a global variable in your code, use a global Data Store Memory block based
on a Simulink.Signal object in your model.

1 Set up a data store in your model by using a Data Store Memory block.
2 Associate a Simulink.Signal object with the data store.

a In the base workspace, define a Simulink.Signal object with the same name as the data
store. Set the storage class of the object to ExportedGlobal or ImportedExtern.

b Use the Model Data Editor to enable the Data store name must resolve to Simulink
signal object parameter of the Data Store Memory block. To use the Model Data Editor in a
model, on the Modeling tab, select Model Data Editor under the Design category. On the
Data Stores tab, set the Change View drop-down to Design. Enable Resolve for the Data
Store Memory block. For more information, see “Configure Data Properties by Using the
Model Data Editor” .

3 In your model, attach the signals that you want to Data Store Read blocks that read from the data
store and Data Store Write blocks that write to the data store.

The Simulink.Signal object that is associated with the global Data Store Memory block appears as
a global variable in generated code.

Note If you follow this workflow for Rockwell Automation RSLogix 5000 AOIs, the generated code
uses INOUT variables for the global data.

8 Controlling Generated Code Partitions

8-2

Control Code Partitions for Subsystem Block
Simulink PLC Coder converts subsystems to function block units according to the following rules:

• Generates a function block for the top-level atomic subsystem for which you generate code.
• Generates a function block for an atomic subsystem whose Function packaging parameter is set

to Reusable function.
• Inlines generated code from atomic subsystems, whose Function packaging parameter is set to

Inline, into the function block that corresponds to the nearest ancestor subsystem. This nearest
ancestor cannot be inlined.

For code generation from a subsystem with no inputs or outputs, you must set the Function
packaging parameter of the block to Reusable function.

These topics use code generated with CoDeSys Version 2.3.

Control Code Partitions Using Subsystem Block Parameters
You can partition generated code using the following Subsystem block parameters on the Code
Generation tab. See the Subsystem block documentation for details.

• Function packaging
• Function name options

Leave the File name options set to the default, Auto.

Generating Separate Partitions and Inlining Subsystem Code

Use the Function packaging parameter to specify the code format to generate for an atomic
(nonvirtual) subsystem. The Simulink PLC Coder software interprets this parameter depending on the
setting that you choose:

Setting Coder Interpretation
Auto Uses the optimal format based on the type and

number of subsystem instances in the model.
Reusable function Generates a function with arguments that allows

reuse of subsystem code when a model includes
multiple instances of the subsystem.

Nonreusable function The Simulink PLC Coder does not support
Nonreusable function packaging. See,
“Restrictions” on page 12-2.

Inline Inlines the subsystem unconditionally.

For example, in the plcdemo_hierarchical_virtual_subsystem, you can:

• Inline the S1 subsystem code by setting Function packaging to Inline. This setting creates one
function block for the parent with the S1 subsystem inlined.

• Create a function block for the S2 subsystem by setting Function packaging to Reusable
function or Auto. This setting creates two function blocks, one for the parent, one for S2.

 Control Code Partitions for Subsystem Block

8-3

Changing the Name of a Subsystem

You can use the Function name options parameter to change the name of a subsystem from the one
on the block label. When the Simulink PLC Coder generates software, it uses the string you specify
for this parameter as the subsystem name. For example, see
plcdemo_hierarchical_virtual_subsystem:

1 Open the S1 subsystem block parameter dialog box.
2 If the Treat as atomic unit check box is not yet selected, select it.
3 Click the Code Generation tab.
4 Set Function packaging to Reusable function.
5 Set Function name options to User specified.
6 In the Function name field, specify a custom name. For example, type my_own_subsystem.

8 Controlling Generated Code Partitions

8-4

7 Save the new settings.
8 Generate code for the parent subsystem.
9 Observe the renamed function block.

One Function Block for Atomic Subsystems
The code for plcdemo_simple_subsystem is an example of generating code with one function
block. The atomic subsystem for which you generate code does not contain other subsystems.

One Function Block for Virtual Subsystems
The plcdemo_hierarchical_virtual_subsystem example contains an atomic subsystem that
has two virtual subsystems, S1 and S2, inlined. A virtual subsystem does not have the Treat as
atomic unit parameter selected. When you generate code for the hierarchical subsystem, the code
contains only the FUNCTION_BLOCK HierarchicalSubsystem component. There are no additional
function blocks for the S1 and S2 subsystems.

 Control Code Partitions for Subsystem Block

8-5

Multiple Function Blocks for Nonvirtual Subsystems
The plcdemo_hierarchical_subsystem example contains an atomic subsystem that has two
nonvirtual subsystems, S1 and S2. Virtual subsystems have the Treat as atomic unit parameter
selected. When you generate code for the hierarchical subsystem, that code contains the
FUNCTION_BLOCK HierarchicalSubsystem, FUNCTION_BLOCK S1, and FUNCTION_BLOCK S2
components.

8 Controlling Generated Code Partitions

8-6

 Control Code Partitions for Subsystem Block

8-7

Control Code Partitions for MATLAB Functions in Stateflow
Charts

Simulink PLC Coder inlines MATLAB functions in generated code based on your inlining
specifications. To specify whether to inline a function:

1 Right-click the MATLAB function and select Properties.
2 For Function Inline Option, select Inline if you want the function to be inlined. Select

Function if you do not want the function to be inlined. For more information, see “Specify
Properties of MATLAB Functions” (Stateflow).

However, Simulink PLC Coder does not follow your inlining specifications exactly in the following
cases:

• If a MATLAB function accesses data that is local to the chart, it is inlined in generated code even if
you specify that the function must not be inlined.

Explanation: The chart is converted to a function block in generated code. If the MATLAB function
in the chart is converted to a Structured Text function, it cannot access the data of an instance of
the function block. Therefore, the MATLAB function cannot be converted to a Structured Text
function in generated code and is inlined.

• If a MATLAB function has multiple outputs and you specify that the function must not be inlined, it
is converted to a function block in generated code.

Explanation: A Structured Text function cannot have multiple outputs, therefore the MATLAB
function cannot be converted to a Structured Text function.

The following simple example illustrates the different cases. The model used here has a Stateflow
chart that contains four MATLAB functions fcn1 to fcn4.

Here is the model.

8 Controlling Generated Code Partitions

8-8

Here is the Stateflow chart.

 Control Code Partitions for MATLAB Functions in Stateflow Charts

8-9

The functions fcn1 to fcn4 are defined as follows.

8 Controlling Generated Code Partitions

8-10

Function Inlining Specification Generated Code
fcn1:

function y = fcn1(u)
y = u+1;

Specify that the
function must be
inlined.

fcn1 is inlined in the generated code.

is_c3_Chart := Chart_IN_A;
(* Outport: '<Root>/y1'
 incorporates:
 * Inport: '<Root>/u1' *)
(* Entry 'A': '<S1>:10' *)
(* MATLAB Function 'fcn1':
 '<S1>:1' *)
(* '<S1>:1:3' *)
y1 := u1 + 1.0;

fcn2:

function y = fcn2(u)
y = u+2;

Specify that the
function must not be
inlined.

fcn2 is not inlined in the generated code.

is_c3_Chart := Chart_IN_B;
(* Outport: '<Root>/y2'
 incorporates:
 * Inport: '<Root>/u2' *)
(* Entry 'B': '<S1>:11' *)
 y2 := fcn2(u := u2);
.
.
.
FUNCTION fcn2: LREAL
VAR_INPUT
 u: LREAL;
END_VAR
VAR_TEMP
END_VAR
(* MATLAB Function 'fcn2':
 '<S1>:4' *)
(* '<S1>:4:3' *)
fcn2 := u + 2.0;
END_FUNCTION

fcn3:

function y = fcn3(u)
% The function accesses
% local data x of
% parent chart
y = u+3+x;

Specify that the
function must not be
inlined.

fcn3 is inlined in the generated code
because it accesses local data from the
Stateflow chart.

is_c3_Chart := Chart_IN_C;
(* Outport: '<Root>/y3'
 incorporates:
 * Inport: '<Root>/u3' *)
(* Entry 'C': '<S1>:15' *)
(* MATLAB Function 'fcn3':
 '<S1>:9' *)
(* The function accesses
 local data x of parent
 chart *)
(* '<S1>:9:4' *)
y3 := (u3 + 3.0) + x;

 Control Code Partitions for MATLAB Functions in Stateflow Charts

8-11

Function Inlining Specification Generated Code
fcn4:

function [yy1,yy2] =
 fcn4(u)
yy1 = u+4;
yy2 = u+5;

Specify that the
function must not be
inlined.

fcn4 is converted to a function block in
the generated code because it has
multiple outputs.

is_c3_Chart := Chart_IN_D;
(* Entry 'D': '<S1>:28' *)
i0_fcn4(u := u4);
b_y4 := i0_fcn4.yy1;
b_y5 := i0_fcn4.yy2;
(* Outport: '<Root>/y4'
 incorporates:
 * Inport: '<Root>/u4' *)
y4 := b_y4;
(* Outport: '<Root>/y5' *)
y5 := b_y5;
.
.
.
FUNCTION_BLOCK fcn4
VAR_INPUT
 u: LREAL;
END_VAR
VAR_OUTPUT
 yy1: LREAL;
 yy2: LREAL;
END_VAR
VAR
END_VAR
VAR_TEMP
END_VAR
(* MATLAB Function 'fcn4':
 '<S1>:26' *)
(* '<S1>:26:3' *)
yy1 := u + 4.0;
(* '<S1>:26:4' *)
yy2 := u + 5.0;
END_FUNCTION_BLOCK

8 Controlling Generated Code Partitions

8-12

Integrating Externally Defined
Identifiers

• “Integrate Externally Defined Identifiers” on page 9-2
• “Integrate Custom Function Block in Generated Code” on page 9-3

9

Integrate Externally Defined Identifiers
The coder allows you to suppress identifier (symbol) definitions in the generated code. This
suppression allows you to integrate a custom element, such as user-defined function blocks, function
blocks, data types, and named global variable and constants, in place of one generated from a
Simulink subsystem. You must then provide these definitions when importing the code into the target
IDE. You must:

• Define the custom element in the subsystem for which you want to generate code.
• Name the custom element.
• In the Configuration Parameters dialog box, add the name of the custom element to PLC Code

Generation > Identifiers > Externally Defined Identifiers in the Configuration Parameters
dialog box.

• Generate code.

For a description of how to integrate a custom function block, see “Integrate Custom Function Block
in Generated Code” on page 9-3. For a description of the Externally Defined Identifiers
parameter, see “Externally Defined Identifiers” on page 13-28.

9 Integrating Externally Defined Identifiers

9-2

Integrate Custom Function Block in Generated Code
To integrate a custom function block, ExternallyDefinedBlock, this procedure uses the example
plcdemo_external_symbols.

1 In a Simulink model, add a MATLAB Function block.
2 Double-click the MATLAB Function block.
3 In the MATLAB editor, minimally define inputs, outputs, and stubs. For example:

function Y = fcn(U,V)
% Stub behavior for simulation. This block
% is replaced during code generation
Y = U + V;

4 Change the MATLAB Function block name to ExternallyDefinedBlock.
5 Create a subsystem from this MATLAB Function block.
6 Complete the model to look like plcdemo_external_symbols.

7 Open the Configuration Parameters dialog box for the model.
8 Add ExternallyDefinedBlock to PLC Code Generation > Identifiers > Externally

Defined Identifiers.
9 The plcdemo_external_symbols model also suppresses K1 and InBus. Add these symbol

names to the Externally Defined Identifiers field, separated by spaces or commas. For other
settings, see the plcdemo_external_symbols model.

 Integrate Custom Function Block in Generated Code

9-3

matlab:plcdemo_external_symbols
matlab:plcdemo_external_symbols

10 Save and close your new model. For example, save it as plcdemo_external_symbols_mine.
11 Generate code for the model.
12 In the generated code, look for instances of ExternallyDefinedBlock.

The reference of ExternallyDefinedBlock is:

The omission of ExternallyDefinedBlock is:

9 Integrating Externally Defined Identifiers

9-4

IDE-Specific Considerations

• “Integrate Generated Code with Siemens IDE Project” on page 10-2
• “Use Internal Signals for Debugging in RSLogix 5000 IDE” on page 10-3
• “Rockwell Automation RSLogix Requirements” on page 10-4
• “Siemens IDE Requirements” on page 10-6
• “Selectron CAP1131 IDE Requirements” on page 10-8

10

Integrate Generated Code with Siemens IDE Project
You can integrate generated code with an existing Siemens SIMATIC STEP 7 or Siemens TIA Portal
project. For more information on:

• How to generate code, see “Generate and Examine Structured Text Code” on page 1-9.
• The location of generated code, see “Files Generated by Simulink PLC Coder” on page 1-14.

Integrate Generated Code with Siemens SIMATIC STEP 7 Projects
1 In the Siemens SIMATIC STEP 7 project, right-click the Sources node and select Insert New

Object > External Source.
2 Navigate to the folder containing the generated code and open the file.

The custom file name unless assigned differently, is the model_name.scl. After you open the
file, a new entry called model_name.scl appears under the Sources node.

3 Double-click the new entry. The generated code is listed in the SCL editor window.
4 In the SCL editor window, select Options > Customize.
5 In the customize window, select Create block numbers automatically, and click OK.

Symbol addresses are automatically generated for Subsystem blocks.
6 In the SCL editor window, compile the model_name.scl file for the Subsystem block.

The new Function Block is now integrated and available for use with the existing Siemens SIMATIC
STEP 7 project.

Integrate Generated Code with Siemens TIA Portal Projects
1 In the Project tree pane, on the Devices tab, under the External source files node in your

project, select Add new external file.
2 Navigate to the folder containing the generated code and open the file.

The custom file name unless assigned differently, is the model_name.scl. After you open the
file, a new entry called model_name.scl appears under the External source files node.

3 Right-click the new entry and select Generate blocks from source.

The Siemens TIA Portal IDE compiles the new file and generates TIA Portal program blocks from
the code. The program blocks appear under the Program blocks node. They are available for
use with the existing Siemens TIA Portal project.

10 IDE-Specific Considerations

10-2

Use Internal Signals for Debugging in RSLogix 5000 IDE
For debugging, you can generate code for test point outputs from the top-level subsystem of your
model. The coder generates code that maps the test pointed output to optional AOI output
parameters for RSLogix 5000 IDEs. In the generated code, the variable tags that correspond to the
test points have the property Required=false. This example assumes that you have a model
appropriately configured for the coder, such as plcdemo_simple_subsystem.

1 Open the plcdemo_simple_subsystem model.

plcdemo_simple_subsystem
2 In the Configuration Parameters dialog box, set Target IDE to Rockwell RSLogix 5000:

AOI.
3 In the top-level subsystem of the model, right-click the output signal of SimpleSubsystem and

select Properties.

The Signal Properties dialog box is displayed.
4 On the Logging and accessibility tab, click the Test point check box.

5 Click OK.
6 Generate code for the top-level subsystem.
7 Inspect the generated code for the string Required=false.

For more information on signals with test points, see “What Is a Test Point?”.

 Use Internal Signals for Debugging in RSLogix 5000 IDE

10-3

Rockwell Automation RSLogix Requirements
Following are considerations for this target IDE platform.

Add-On Instruction and Function Blocks
The Structured Text concept of function block exists for Rockwell Automation RSLogix target IDEs as
an Add-On instruction (AOI). The Simulink PLC Coder software generates the AOIs for Add-On
instruction format, but not FUNCTION_BLOCK.

Double-Precision Data Types
The Rockwell Automation RSLogix target IDE does not support double-precision data types. At code
generation, Simulink PLC Coder converts this data type to single-precision data types in generated
code.

Design your model to use single-precision data type (single) as much as possible instead of double-
precision data type (double). If you must use doubles in your model, the numeric results produced by
the generated Structured Text can differ from Simulink results. This difference is due to double-single
conversion in the generated code.

Unsigned Integer Data Types
The Rockwell Automation RSLogix target IDE does not support unsigned integer data types. At code
generation, Simulink PLC Coder converts this data type to signed integer data types in generated
code.

Design your model to use signed integer data types (int8, int16, int32) as much as possible instead of
unsigned integer data types (uint8, uint16, uint32). Doing so avoids overflow issues that unsigned-to-
signed integer conversions can cause in the generated code.

Unsigned Fixed-Point Data Types
In the generated code, Simulink PLC Coder converts fixed-point data types to target IDE integer data
types. Because the Rockwell Automation RSLogix target IDE does not support unsigned integer data
types, do not use unsigned fixed-point data types in the model. For more information about coder
limitations for fixed-point data type support, see “Fixed Point Simulink PLC Coder Structured Text
Code Generation” on page 20-2.

Enumerated Data Types
The Rockwell Automation RSLogix target IDE does not support enumerated data types. At code
generation, Simulink PLC Coder converts this data type to 32-bit signed integer data type in
generated code.

Reserved Keywords
The Rockwell AutomationRSLogix target IDE has reserved keywords. Do not use them as tag names
in subsystems from which code will be for be generated for Rockwell AutomationRSLogix IDE.

10 IDE-Specific Considerations

10-4

ABS ACS AND ASN ATN COS DEG FRD LN LOG MOD
NOT OR RAD SIN SQR TAN TOD TRN XOR acos asin
atan by case do else elsif end_cas

e
end_for end_if end_rep

eat
end_wh
ile

exit for if of repeat return then to trunc until while

These keywords are case insensitive. If your code generation target IDE is the Rockwell
AutomationRSLogix 5000 or Studio 5000 IDE do not use these keywords as variable names.

Rockwell Automation IDE selection
Based on the L5X import file target IDE version you will choose the PLC target IDE to be
RSLogix5000 or Studio 5000. If importing into v24 or later choose Studio 5000 else for versions prior
to v24 choose RSLogix 5000.

 Rockwell Automation RSLogix Requirements

10-5

Siemens IDE Requirements

Target PLCs and Supported Data Types
To choose your target PLC based on supported data types, see the options in this table.

Data Type S7-300/400 S7-1200 S7-1500
BOOL Yes Yes Yes
BYTE Yes Yes Yes
WORD Yes Yes Yes
DWORD Yes Yes Yes
LWORD No No Yes
SINT No Yes Yes
INT Yes Yes Yes
DINT Yes Yes Yes
USINT No Yes Yes
UINT No Yes Yes
UDINT No Yes Yes
LINT No No Yes
ULINT No No Yes
REAL Yes Yes Yes
LREAL No Yes Yes

To generate code for your S7-300/400 series PLCs use the SIMATIC STEP 7 or TIA Portal as the
target IDE.. To generate code for your S7-1200 or S7-1500 series PLCs, use the TIA Portal: Double
Precision as the target IDE .

Double-Precision Floating-Point Data Types
To generate code for your Siemens targets that do not support double-precision, floating-point data
types, use the SIMATIC STEP 7 or TIA Portal as the target IDE. At code generation, Simulink PLC
Coder converts this data type to single-precision real data types in the generated code. Design your
model so that the possible precision loss of generated code numeric results does not change the
expected semantics of the model.

To generate code for your Siemens targets that support double-precision, floating-point types, use
Siemens TIA Portal: Double Precision as the target IDE. The generated code uses the LREAL type for
double-precision, floating-point types in the model. For more information, see “Target IDE” on page
13-3.

int8 Data Type and Unsigned Integer Types
To generate code for your Siemens targets that do not support the int8 data type and unsigned
integer data types, use Siemens SIMATIC Step 7 or Siemens TIA Portal as the target IDE. At code

10 IDE-Specific Considerations

10-6

generation, Simulink PLC Coder converts the int8 data type and unsigned integer data types to int16
or int32 in the generated code.

Design your model to use int16 and int32 data types as much as possible instead of int8 or unsigned
integer data types. The Simulink numeric results by using the int8 data type or unsigned integer data
types can differ from the numeric results produced by the generated structured text.

Design your model so that the effects of integer data type conversion of the generated code do not
change the expected semantics of the model.

To generate code for your Siemens targets that support the int8 data type and unsigned integer data
types, use Siemens TIA Portal: Double Precision as the target IDE. The generated code preserves the
int8 data type and unsigned integer data types. For more information, see “Target IDE” on page 13-
3.

Unsigned Fixed-Point Data Types
Do not use unsigned, fixed-point data types in your model to generate code for your Siemens targets
that do not support unsigned integer data types. For more information about coder limitations for
fixed-point data type support, see “Fixed Point Simulink PLC Coder Structured Text Code Generation”
on page 20-2.

Enumerated Data Types
The Siemens SIMATIC STEP 7 and TIA Portal target IDEs do not support enumerated data types.
Simulink PLC Coder converts this data type to 16-bit signed integer data type in the generated code
for Siemens targets.

 Siemens IDE Requirements

10-7

Selectron CAP1131 IDE Requirements
For the Selectron CAP1131 target IDE platform, consider these limitations:

Double-Precision Floating-Point Data Types
The Selectron CAP1131 target IDE does not support double-precision floating-point data types. At
code generation, the Simulink PLC Coder converts this data type to single-precision real data types in
the generated code. Design your model so that the possible precision loss of numerical results of the
generated code numeric results does not change the model semantics that you expect.

Enumerated Data Types
The Selectron CAP1131 target IDE does not support enumerated data types. The Selectron CAP1131
IDE converts this data type to 32-bit signed integer data type in the generated code.

See Also

10 IDE-Specific Considerations

10-8

Supported Simulink and Stateflow
Blocks

11

Supported Blocks
For Simulink semantics not supported by Simulink PLC Coder, see “Structured Text Code Generation
Limitations” on page 12-2.

View Supported Blocks Library
To view a Simulink library of blocks that the Simulink PLC Coder software supports, type plclib in
the Command Window. The coder can generate Structured Text code for subsystems that contain
these blocks. The library window is displayed.

This library contains two sublibraries, Simulink and Stateflow. Each sublibrary contains the blocks
that you can include in a Simulink PLC Coder model.

Supported Simulink Blocks
The coder supports the following Simulink blocks.

Additional Math & Discrete/Additional Discrete

Transfer Fcn Direct Form II

Transfer Fcn Direct Form II Time Varying

11 Supported Simulink and Stateflow Blocks

11-2

Unit Delay Enabled (Obsolete)

Unit Delay Enabled External IC (Obsolete)

Unit Delay Enabled Resettable (Obsolete)

Unit Delay Enabled Resettable External IC (Obsolete)

Unit Delay External IC (Obsolete)

Unit Delay Resettable (Obsolete)

Unit Delay Resettable External IC (Obsolete)

Unit Delay With Preview Enabled (Obsolete)

Unit Delay With Preview Enabled Resettable (Obsolete)

Unit Delay With Preview Enabled Resettable External RV (Obsolete)

Unit Delay With Preview Resettable (Obsolete)

Unit Delay With Preview Resettable External RV (Obsolete)

Commonly Used Blocks

Inport

Bus Creator

Bus Selector

Constant

Data Type Conversion

Demux

Discrete-Time Integrator

Gain

Ground

Logical Operator

Mux

Product

Relational Operator

Saturation

Scope

Subsystem

 Supported Blocks

11-3

Inport

Outport

Sum

Switch

Terminator

Unit Delay

Discontinuities

Coulomb and Viscous Friction

Dead Zone Dynamic

Rate Limiter

Rate Limiter Dynamic

Relay

Saturation

Saturation Dynamic

Wrap To Zero

Discrete

Difference

Discrete Transfer Fcn

Discrete Derivative

Discrete FIR Filter

Discrete Filter

Discrete PID Controller

Discrete PID Controller (2 DOF)

Discrete State-Space

Discrete-Time Integrator

FIR Interpolation

Integer Delay

Memory

Tapped Delay

11 Supported Simulink and Stateflow Blocks

11-4

Transfer Fcn First Order

Transfer Fcn Lead or Lag

Transfer Fcn Real Zero

Unit Delay

Zero-Order Hold

Logic and Bit Operations

Bit Clear

Bit Set

Bitwise Operator

Compare To Constant

Compare To Zero

Detect Change

Detect Decrease

Detect Increase

Detect Fall Negative

Detect Fall Nonpositive

Detect Rise Nonnegative

Detect Rise Positive

Extract Bits

Interval Test

Interval Test Dynamic

Logical Operator

Shift Arithmetic

Lookup Tables

Dynamic-Lookup

Interpolation Using Prelookup

PreLookup

n-D Lookup Table

 Supported Blocks

11-5

Math Operations

Abs

Add

Assignment

Bias

Divide

Dot Product

Gain

Math Function

Matrix Concatenate

MinMax

MinMax Running Resettable

Permute Dimensions

Polynomial

Product

Product of Elements

Reciprocal Sqrt

Reshape

Rounding Function

Sign

Slider Gain

Sqrt

Squeeze

Subtract

Sum

Sum of Elements

Trigonometric Function

Unary Minus

Vector Concatenate

11 Supported Simulink and Stateflow Blocks

11-6

Model Verification

Assertion

Check Discrete Gradient

Check Dynamic Gap

Check Dynamic Range

Check Static Gap

Check Static Range

Check Dynamic Lower Bound

Check Dynamic Upper Bound

Check Input Resolution

Check Static Lower Bound

Check Static Upper Bound

Model-Wide Utilities

DocBlock

Model Info

Ports & Subsystems

Atomic Subsystem

CodeReuse Subsystem

Enabled Subsystem

Enable

Function-Call Subsystem

Subsystem

Inport

Outport

Signal Attributes

Data Type Conversion

Data Type Duplicate

Signal Conversion

 Supported Blocks

11-7

Signal Routing

Bus Assignment

Bus Creator

Bus Selector

Data Store Memory

Demux

From

Goto

Goto Tag Visibility

Index Vector

Multiport Switch

Mux

Selector

Sinks

Display

Floating Scope

Scope

Stop Simulation

Terminator

To File

To Workspace

XY Graph

Sources

Constant

Counter Free-Running

Counter Limited

Enumerated Constant

Ground

Pulse Generator

11 Supported Simulink and Stateflow Blocks

11-8

Repeating Sequence Interpolated

Repeating Sequence Stair

User-Defined Functions

MATLAB Function (MATLAB Function Block)

Supported Stateflow Blocks
The coder supports the following Stateflow blocks.

Stateflow

Chart

State Transition Table

Truth Table

Blocks with Restricted Support
Simulink Block Support Exceptions

The Simulink PLC Coder software supports the plclib blocks with the following exceptions. Also,
see “Structured Text Code Generation Limitations” on page 12-2 for a list of limitations of the
software.

If you get unsupported fixed-point type messages during code generation, update the block
parameter. Open the block parameter dialog box. Navigate to the Signal Attributes and Parameter
Attributes tabs. Check that the Output data type and Parameter data type parameters are not
Inherit: Inherit via internal rule. Set these parameters to either Inherit: Same as
input or a desired non-fixed-point data type, such as double or int8.

Stateflow Chart Exceptions

If you receive a message about consistency between the original subsystem and the S-function
generated from the subsystem build, and the model contains a Stateflow chart that contains one or
more Simulink functions, use the following procedure to address the issue:

1 Open the model and double-click the Stateflow chart that causes the issue.

The chart Stateflow Editor dialog box is displayed.
2 Right-click in this dialog box.
3 In the context-sensitive menu, select Properties.

The Chart dialog box is displayed.
4 In the Chart dialog box, navigate to the States When Enabling parameter and select Held.
5 Click Apply and OK and save the model.

 Supported Blocks

11-9

Data Store Memory Block

To generate PLC code for a model that uses a Data Store Memory block, first define a
Simulink.Signal object in the base workspace. Then, in the Signal Attributes tab of the block
parameters, set the data store name to resolve to that Simulink.Signal object.

For more information, see “Data Stores with Data Store Memory Blocks”.

Reciprocal Sqrt Block

The Simulink PLC Coder software does not support the Simulink Reciprocal Sqrt block signedSqrt
and rSqrt functions.

Lookup Table Blocks

Simulink PLC Coder has limited support for lookup table blocks. The coder does not support:

• Number of dimensions greater than 2
• Cubic spline interpolation method
• Begin index search using a previous index mode
• Cubic spline extrapolation method

Note The Simulink PLC Coder software does not support the Simulink Lookup Table Dynamic block.
For your convenience, the plclib/Simulink/Lookup Tables library contains an implementation of a
dynamic table lookup block using the Prelookup and Interpolation Using Prelookup blocks.

11 Supported Simulink and Stateflow Blocks

11-10

Limitations

• “Structured Text Code Generation Limitations” on page 12-2
• “Ladder Logic Code Generation Limitations” on page 12-4

12

Structured Text Code Generation Limitations

General Limitations
The Simulink PLC Coder software does not support:

• Complex data types
• String data types
• Model reference blocks
• Stateflow machine-parented data and events
• Stateflow messages
• Limited support for math functions
• Merge block
• Step block
• Clock block
• Signal and state storage classes
• Shared state variables between subsystems
• For Each Subsystem block
• Variable-size signals and parameters
• MATLAB System block or system objects
• MATLAB classes.
• The Simulink.CoderInfo Identifier name property with Simulink.Parameter and

Simulink.Signal objects.
• The Simulink.LookupTable, Simulink.Breakpoint, and

Simulink.DualScaledParameter objects.
• Code generation for Simulink signals that do not resolve to a Simulink.Signal data store

memory object.
• Code generation when UseRowMajorAlgorithm='on'.
• The use of enum datatype numeric values for comparison inside model subsystem blocks. Use a

data type conversion block to perform an enum to integer conversion, to perform the numeric
comparison.

• The use of special characters in comments. This could lead to errors when importing the
generated code.

• Signal lines named using Simulink.Signal mappings.
• Half precision fixed-point data types.
• Testbench generation for models using software-in-the-loop (SIL) simulation mode.
• Testbench generation for models using processor-in-the-loop (PIL) simulation mode.

Restrictions
The structured text language has inherent restrictions. As a result, the Simulink PLC Coder software
has these restrictions:

12 Limitations

12-2

• Supports code generation only for atomic subsystems.
• Supports automatic, inline, or reusable function packaging for code generation. Nonreusable

function packaging is not supported.
• Does not support blocks that require continuous time semantics. This restriction includes

integrator blocks, zero-crossing detection blocks, physical blocks, such as Simscape™ library
blocks and so on.

• Does not support pointer data types.
• Does not support recursion (including recursive events).
• Does not support nonfinite data, for example NaN or Inf.
• Does not support MATLAB 64-bit integer data types.

Negative Zero
In a floating-point data type, the value 0 has either a positive sign or a negative sign. Arithmetically, 0
is equal to -0, but some operations are sensitive to the sign of a 0 input. Examples include rdivide,
atan2, atan2d, and angle. Division by 0 produces Inf, but division by -0 produces -Inf. Similarly,
atan2d(0,-1) produces 180, but atan2d (-0,-1) produces -180.

Simulink PLC Coder stores -0 as 0 because there is no representation of -0 in IEC61131.This leads
to division by -0 producing -Inf in Simulink, but Inf in PLC IDE. Similarly, atan2d(-0,-1)
produces -180 in Simulink, but 180 in PLC IDE as the -0 is converted to 0.

Divide by Zero
In Simulink, division by zero produces either Inf or the largest number for the data type. In the
Codesys target IDE, division by zero results in a -1. Code generation by using a testbench might
result in testbench verification failures due to a difference in results from divide by zero operations.

Fixed-Point Data Type Multiword Operations
Simulink PLC Coder does not support code generation for block parameter settings that require
fixed-point data type multiword operations. For example, the square root block that has int32 integer
data type as input and output data type setting of Inherit via internal rule is not supported
for code generation.

Inplace Variables Code Generation
Inplace argument semantics could be broken if the datatypes between inputs and outputs differ in the
number of dimensions. To fix the problem, set the input variable size to -1. For more information, see
“Declare Variable-Size Inputs and Outputs”.

 Structured Text Code Generation Limitations

12-3

Ladder Logic Code Generation Limitations

plcladderlib Limitations
Simulink PLC Coder plcladderlib has these limitations:

• Only Rockwell Automation RSLogix 5000 and Studio 5000 IDEs can import ladder logic generated
using the plcladderlib library.

Ladder Diagram Import Limitations
• When importing an .L5X file that contains a continuous task, the imported Simulink model has a

sample time of -1. For periodic tasks, the sample time is the value specified in the .L5X file. Event
tasks are not supported.

• Simulink PLC Coder may not follow the same initialization order specified in the Prescan mode.
Do not read variables that are read by the Prescan mode because this leads to different behavior
in simulation of the model when compared to execution in the IDE. The affected Simulink PLC
Coder plcladderlib blocks are: OTE, ONS, OSF, OSR, CTD, CTU, TON, TOF, RTO, JSR, AOI, and
FBC

• If you Ladder Diagram implementation has multiple AOI or subroutine instances with the same
name, the software does not check if these instances refer to the same implementation. It is
recommended to use different names if these structures contain different functionality.

Ladder Diagram Modeling and Simulation Limitations
• Ladder models do not support unsigned integer types. Use signed integer instead.
• Ladder models do not support double type. Instead, use single type.
• The Rockwell Automation IDEs have limitations on the character length used for names. The

length should not be more than 40 characters. For supported name lengths consult the Rockwell
documentation.

• Label the Port numbers in the Controller Tags uniquely and sequentially, when modeling Ladder
Diagrams in Simulink.

Ladder Diagram Code Generation Limitations
• Code generation requires a controller, task, program model, AOI runner, or AOI model hierarchy
• AOI input argument should be either non-array or 1-D array type. Test bench generation does not

support 2-D or 3-D array types. This limitation includes nested 2-D, 3-D array types in structure
fields.

• The Rockwell Automation IDEs have limitations on the character length used for names. The
length should not be more than 40 characters. For supported name lengths consult the Rockwell
documentation.

Ladder Diagram Verification Limitations
• Ladder test bench generation is supported for only AOI Runner block.

12 Limitations

12-4

• AOI input argument should be either non-array or 1-D array type. Test bench generation does not
support 2-D or 3-D array types. This limitation includes nested 2-D, 3-D array types in structure
fields.

• AOI input argument in the L5X file should not be single-element array type for runner test bench
generation.

• Test bench generation for Ladder Diagram models containing timer blocks such as TON, TOF and
RTO fails. To generate test-bench code for these models, modify the Ladder Diagram structure
while maintaining the logic.

• If the Simulink model is set as read-only, the model can become corrupted during the test bench
generation process. When the code generation process completes, it reverts all code generation
changes performed on the model. You can ignore or close the model during this process.

“Generating Ladder Diagram Code from Simulink” on page 3-34 | “Import L5X Ladder Files into
Simulink” on page 3-22 | “Modeling and Simulation of Ladder Diagrams in Simulink” on page 3-27 |
“Verify Generated Ladder Diagram Code” on page 3-38

 Ladder Logic Code Generation Limitations

12-5

Configuration Parameters for Simulink
PLC Coder Models

• “PLC Coder: General” on page 13-2
• “PLC Coder: Comments” on page 13-13
• “PLC Coder: Optimization” on page 13-16
• “PLC Coder: Identifiers” on page 13-23
• “PLC Coder: Report” on page 13-31
• “PLC Coder:Interface” on page 13-34

13

PLC Coder: General

In this section...
“PLC Coder: General Tab Overview” on page 13-3
“Target IDE” on page 13-3
“Show Full Target List” on page 13-5
“Target IDE Path” on page 13-6
“Code Output Directory” on page 13-7
“Generate Testbench for Subsystem” on page 13-7
“Include Testbench Diagnostic Code” on page 13-8
“Generate Functions Instead of Function Block” on page 13-8
“Allow Functions with Zero Inputs” on page 13-9
“Suppress Auto-Generated Data Types” on page 13-10
“Emit Data type Worksheet Tags for PCWorx” on page 13-10
“Aggressively Inline Structured Text Function Calls” on page 13-11
“Signal Builder Block Time Range to Generate Multi Testbench” on page 13-11

13 Configuration Parameters for Simulink PLC Coder Models

13-2

PLC Coder: General Tab Overview
Set up general information about generating Structured Text code to download to target PLC IDEs.

Configuration

To enable the Simulink PLC Coder options pane, you must:

1 Create a model.
2 Add either an Atomic Subsystem block, or a Subsystem block for which you have selected the

Treat as atomic unit check box.
3 Right-click the subsystem block and select PLC Code > Options.

Tip

• In addition to configuring parameters for the Simulink PLC Coder model, you can also use this
dialog box to generate Structured Text code and test bench code for the Subsystem block.

• Certain options are target-specific and are displayed based on the selection for Target IDE.

See Also

“Prepare Model for Structured Text Generation” on page 1-3

“Generate Structured Text from the Model Window” on page 1-9

Target IDE
Select the target IDE for which you want to generate code. This option is available in the
Configuration Parameters dialog box, PLC Code Generation pane.

The default Target IDE list shows the full set of supported targets. See “Show Full Target List” on
page 13-5.

To see a reduced subset of targets, clear the option Show full target list. To customize this list and
specify IDEs that you use more frequently, use the plccoderpref function.

For version numbers of supported IDEs, see “Supported IDE Platforms”.

Settings

Default: 3S CoDeSys 2.3

3S CoDeSys 2.3
Generates Structured Text (IEC 61131-3) code for 3S-Smart Software Solutions CoDeSys Version
2.3.

3S CoDeSys 3.3
Generates Structured Text code in PLCopen XML for 3S-Smart Software Solutions CoDeSys
Version 3.3.

3S CoDeSys 3.5
Generates Structured Text code in PLCopen XML for 3S-Smart Software Solutions CoDeSys
Version 3.5.

 PLC Coder: General

13-3

B&R Automation Studio 3.0
Generates Structured Text code for B&R Automation Studio 3.0.

B&R Automation Studio 4.0
Generates Structured Text code for B&R Automation Studio 4.0.

Beckhoff TwinCAT 2.11
Generates Structured Text code for Beckhoff TwinCAT 2.11 software.

Beckhoff TwinCAT 3
Generates Structured Text code for Beckhoff TwinCAT 3 software.

KW-Software MULTIPROG 5.0
Generates Structured Text code in PLCopen XML for PHOENIX CONTACT (previously KW)
Software MULTIPROG 5.0 or 5.50.

Phoenix Contact PC WORX 6.0
Generates Structured Text code in PLCopen XML for Phoenix Contact PC WORX 6.0.

Rockwell RSLogix 5000: AOI
Generates Structured Text code for Rockwell Automation RSLogix 5000 using Add-On Instruction
(AOI) constructs.

Rockwell RSLogix 5000: Routine
Generates Structured Text code for Rockwell Automation RSLogix 5000 routine constructs.

Rockwell Studio 5000: AOI
Generates Structured Text code for Rockwell Automation Studio 5000 Logix Designer using Add-
On Instruction (AOI) constructs.

Rockwell Studio 5000: Routine
Generates Structured Text code for Rockwell Automation Studio 5000 Logix Designer routine
constructs.

Siemens SIMATIC Step 7
Generates Structured Text code for Siemens SIMATIC STEP 7.

Siemens TIA Portal
Generates Structured Text code for Siemens TIA Portal S7-300/400 CPUs.

Siemens TIA Portal: Double Precision
Generates Structured Text code for Siemens TIA Portal S7-1200 and S7-1500 CPUs. THE IDE also
supports the int8 data type, unsigned integer data types, and double-precision, floating-point data
types. The code uses LREAL type for double data type in the model and can be used on Siemens
PLC devices that support the LREAL type.

Generic
Generates a pure Structured Text file. If the target IDE that you want is not available for the
Simulink PLC Coder product, consider generating and downloading a generic Structured Text file.

PLCopen XML
Generates Structured Text code formatted using PLCopen XML standard.

Rexroth Indraworks
Generates Structured Text code for Rexroth IndraWorks version 13V12 IDE.

OMRON Sysmac Studio
Generates Structured Text code for OMRON® Sysmac® Studio Version 1.04, 1.05, or 1.09.

13 Configuration Parameters for Simulink PLC Coder Models

13-4

Selectron CAP1131
Generates Structured Text code for Selectron CAP1131 v 11 IDE.

Tips

• Rockwell Automation RSLogix 5000 routines represent the model hierarchy using hierarchical
user-defined types (UDTs). UDT types preserve model hierarchy in the generated code.

• The coder generates code for reusable subsystems as separate routine instances. These
subsystems access instance data in program tag fields.

Command-Line Information
Parameter: PLC_TargetIDE
Type: string
Value: 'codesys23' | 'codesys33' | 'codesys35' | 'rslogix5000' |
'rslogix5000_routine' | 'studio5000' | 'studio5000_routine' | 'brautomation30' |
'brautomation40' | 'multiprog50' | 'pcworx60' | 'step7' | 'plcopen' | 'twincat211' |
'twincat3' | 'generic' | 'indraworks' | 'omron' | 'tiaportal' | 'tiaportal_double'
Default: 'codesys23'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Show Full Target List
View the full list of supported target IDEs in the Target IDE drop-down list. For more information,
see“Target IDE” on page 13-3. This option is available on the PLC Code Generation pane in the
Configuration Parameters dialog box.

Settings

Default: On

 On
The Target IDE list displays the full set of supported IDEs. For more information, see “Supported
IDE Platforms”.

 Off
The Target IDE list displays only the more commonly used IDEs. The default subset contains the
following IDEs:

• codesys23 — 3S-Smart Software Solutions CoDeSys Version 2.3 (default) target IDE
• studio5000 — Rockwell Automation Studio 5000 Logix Designer target IDE for AOI format
• step7 — Siemens SIMATIC STEP 7 target IDE
• omron — OMRON Sysmac Studio
• plcopen — PLCopen XML target IDE

You can customize the entries in the reduced Target IDE list by using the plccoderpref
function.

 PLC Coder: General

13-5

Command-Line Information
Parameter: PLC_ShowFullTargetList
Type: string
Value: 'on' | 'off'
Default: 'on'

You can change the contents of the reduced Target IDE list using the plccoderpref function. See
plccoderpref.

Target IDE Path
Specify the target IDE installation path. The path already specified is the default installation path for
the target IDE. Change this path if your IDE is installed in a different location. This option is available
on the PLC Code Generation pane in the Configuration Parameters dialog box.

Settings

Default: C:\Program Files\3S Software

C:\Program Files\3S Software
Default installation path for 3S-Smart Software Solutions CoDeSys software Version 2.3.

C:\Program Files\3S CoDeSys
Default installation path for 3S-Smart Software Solutions CoDeSys software Version 3.3 and 3.5.

C:\Program Files\BrAutomation
Default installation path for B&R Automation Studio 3.0 and 4.0 software.

C:\TwinCAT
Default installation path for Beckhoff TwinCAT 2.11 and 3 software.

C:\Program Files\KW-Software\MULTIPROG 5.0
Default installation path for PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0
software. For MULTIPROG 5.50, the installation path may be different, change accordingly.

C:\Program Files\Phoenix Contact\Software Suite 150
Default installation path for Phoenix Contact PC WORX 6.0 software.

C:\Program Files\Rockwell Software
Default installation path for Rockwell Automation RSLogix 5000 software.

C:\Program Files\Siemens
Default installation path for Siemens SIMATIC STEP 7 5.4 software.

C:\Program Files\Siemens\Automation
Default installation path for Siemens TIA Portal software.

Tips

• When you change the Target IDE value, the value of this parameter changes.
• If you right-click the Subsystem block, the PLC Code > Generate and Import Code for

Subsystem command uses this value to import generated code.
• If your target IDE installation is standard, do not edit this parameter. Leave it as the default value.
• If your target IDE installation is nonstandard, edit this value to specify the actual installation path.

13 Configuration Parameters for Simulink PLC Coder Models

13-6

• If you change the path and click Apply, the changed path remains for that target IDE for other
models and between MATLAB sessions. To reinstate the factory default, use the command:

plccoderpref('plctargetidepaths','default')

Command-Line Information

See plccoderpref.

See Also

“Import Structured Text Code Automatically” on page 1-17

Code Output Directory
Enter a path to the target folder into which code is generated. This option is available on the PLC
Code Generation pane in the Configuration Parameters dialog box.

Settings

Default: plcsrc subfolder in your working folder

Command-Line Information
Parameter: PLC_OutputDir
Type: string
Value: string
Default: 'plcsrc'

Tips

• If the target folder path is empty, a default value of ./plcsrc is used as the Code Output
Directory.

• If, you want to generate code in the current folder use . as the output directory.
• The Code Output Directory can have the same name as your current working folder.

See Also

“Generate Structured Text from the Model Window” on page 1-9

Generate Testbench for Subsystem
Specify the generation of test bench code for the subsystem. This option is available on the PLC
Code Generation pane in the Configuration Parameters dialog box.

Settings

Default: off

 On
Enables generation of test bench code for subsystem.

Disables generation of test bench code for subsystems.

 PLC Coder: General

13-7

Command-Line Information
Parameter: PLC_GenerateTestbench
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Include Testbench Diagnostic Code
Specify the generation of test bench code with additional diagnostic information that will help you
identify output variables causing test bench failures. This option is available on the PLC Code
Generation pane in the Configuration Parameters dialog box. To enable this parameter, you must
select the Generate testbench for subsystem option

Settings

Default: off

 On
Enables generation of test bench code with additional diagnostic information.

Disables generation of test bench code with additional diagnostic information.

Command-Line Information
Parameter: PLC_GenerateTestbenchDiagCode
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Generate Functions Instead of Function Block
Use this option to control whether the generated Structured Text code contains Function instead of
Function Block. This option is available for only the Phoenix Contact PC WORX or the PHOENIX
CONTACT (previously KW) Software MULTIPROG target. There are certain cases where you may not
be able to generate code with Function instead of Function Block. For example, if your Simulink
subsystem or MATLAB Function block has internal state or persistent variables. In such cases, the
software issues a diagnostic warning.

This option is available on the PLC Code Generation pane in the Configuration Parameters dialog
box, when the Target IDE is set to Phoenix Contact PC WORX 6.0 or KW-Software
MULTIPROG 5.0.

Settings

Default: off

13 Configuration Parameters for Simulink PLC Coder Models

13-8

 On
The generated Structured Text code contains Function instead of Function Block where
possible.

 Off
Switch to the default behavior of the software.

Command-Line Information
Parameter: PLC_EmitAsPureFunctions
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Allow Functions with Zero Inputs
Emit a function with no inputs as a function instead of a function block. This option is available for
only the Phoenix Contact PC WORX or the PHOENIX CONTACT (previously KW) Software
MULTIPROG target.

When the Target IDE is set to Phoenix Contact PC WORX 6.0 or KW-Software MULTIPROG
5.0, in the Configuration parameters dialog box, PLC Code Generation pane, this option is
available.

Settings

Default: off

 On
The generated Structured Text code contains Function instead of Function Blocks when
there is a function with no inputs.

 Off
The generated Structured Text code contains function blocks and no functions.

Command-Line Information
Parameter: PLC_PureFunctionNoInputs
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

 PLC Coder: General

13-9

Suppress Auto-Generated Data Types
Use this option to control whether the generated Structured Text code contains auto-generated data
types for array types. This option is available for only the Phoenix Contact PC WORX or the PHOENIX
CONTACT (previously KW) Software MULTIPROG target.

This option is available on the PLC Code Generation pane in the Configuration Parameters dialog
box, when the Target IDE is set to Phoenix Contact PC WORX 6.0 or KW-Software
MULTIPROG 5.0.

Settings

Default: off

 On
The software automatically generates named types for array types in your Simulink model.

 Off
Switch to the default behavior of the software.

Command-Line Information
Parameter: PLC_SuppressAutoGenType
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Emit Data type Worksheet Tags for PCWorx
Use this option to control whether datatypeWorksheet tags are represented in code generated for
Phoenix Contact PC WORX target. This option allows you to have finer control and generate multiple
datatypeWorksheet definitions.

This option is available on the PLC Code Generation pane in the Configuration Parameters dialog
box, when the Target IDE is set to Phoenix Contact PC WORX 6.0.

Settings

Default: off

 On
The datatypeWorksheet tags are marked as separate tags in the generated code.

 Off
No separate datatypeWorksheet tags are in the generated code.

Command-Line Information
Parameter: PLC_EmitDatatypeWorkSheet

13 Configuration Parameters for Simulink PLC Coder Models

13-10

Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Aggressively Inline Structured Text Function Calls
Using this option, you can control inlining of Structured Text function calls for Rockwell Automation
targets. By default, the software attempts to inline only math functions where possible. With this
option, the software aggressively inlines all function calls so that the generated code has less number
of Function blocks.

This option is available on the PLC Code Generation pane in the Configuration Parameters dialog
box, when the Target IDE is set to Rockwell Automation targets such as Rockwell Studio 5000:
AOI, Rockwell Studio 5000: Routine, Rockwell RSLogix 5000: AOI, or Rockwell
RSLogix 5000: Routine.

Settings

Default: off

 On
Aggressively inlines Structured Text function calls for RSLogix IDE.

 Off
Reverts to its default behavior and inlines only math function calls in the generated code.

Command-Line Information

Parameter:PLC_EnableAggressiveInlining
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

• “Generate Structured Text from the Model Window” on page 1-9
• “Generated Code Structure for Simple Simulink Subsystems” on page 2-2

Signal Builder Block Time Range to Generate Multi Testbench
Use this option to generate multiple testbenches of varying sizes. The generated testbench size
depends on the time duration of the respective signal group in the Signal Builder block. This option is
available on the PLC Code Generation pane in the Configuration Parameters dialog box. Select the
Generate testbench for subsystem option.

Settings

Default: Off

 PLC Coder: General

13-11

 On
Generate multiple testbenches with testbench size dependent on time duration of respective
signal group in the Signal Builder block..

 Off
Generate multiple testbenches with testbench size dependent on model simulation time.

Command-Line Information
Parameter: PLC_MultiTBSigbuilderTimeRange
Type: string
Value: 'on' | 'off'
Default: 'off'

13 Configuration Parameters for Simulink PLC Coder Models

13-12

PLC Coder: Comments

In this section...
“Comments Overview” on page 13-13
“Include Comments” on page 13-13
“Include Block Description” on page 13-14
“Simulink Block / Stateflow Object Comments” on page 13-15
“Show Eliminated Blocks” on page 13-15

Comments Overview
Control the comments that the Simulink PLC Coder software automatically creates and inserts into
the generated code.

See Also

“Generate Structured Text from the Model Window” on page 1-9

Include Comments
Specify which comments are in generated files. This option is available on the PLC Code Generation
> Comments pane in the Configuration Parameters dialog box.

 PLC Coder: Comments

13-13

Settings

Default: on

 On
Places comments in the generated files based on the selections in the Auto generated
comments pane.

If you create links to requirements documents from your model using the Simulink Requirements
software, the links also appear in generated code comments.

 Off
Omits comments from the generated files.

Command-Line Information
Parameter: PLC_RTWGenerateComments
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Include Block Description
Specify which block description comments are in generated files. This option is available on the PLC
Code Generation > Comments pane in the Configuration Parameters dialog box.

Settings

Default: on

 On
Places comments in the generated files based on the contents of the block properties General
tab.

 Off
Omits block descriptions from the generated files.

Command-Line Information
Parameter: PLC_PLCEnableBlockDescription
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

• “Propagate Block Descriptions to Code Comments” on page 1-13
• “Generate Structured Text from the Model Window” on page 1-9

13 Configuration Parameters for Simulink PLC Coder Models

13-14

Simulink Block / Stateflow Object Comments
Specify whether to insert Simulink block and Stateflow object comments. This option is available on
the PLC Code Generation > Comments pane in the Configuration Parameters dialog box.

Settings

Default: on

 On
Inserts automatically generated comments that describe block code and objects. The comments
precede that code in the generated file.

 Off
Suppresses comments.

Command-Line Information
Parameter: PLC_RTWSimulinkBlockComments
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Show Eliminated Blocks
Specify whether to insert eliminated block comments. This option is available on the PLC Code
Generation > Comments pane in the Configuration Parameters dialog box.

Settings

Default: off

 On
Inserts statements in the generated code from blocks eliminated as the result of optimizations
(such as parameter inlining).

 Off
Suppresses statements.

Command-Line Information
Parameter: PLC_RTWShowEliminatedStatement
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

 PLC Coder: Comments

13-15

PLC Coder: Optimization

In this section...
“Optimization Overview” on page 13-16
“Default Parameter Behavior” on page 13-17
“Signal Storage Reuse” on page 13-18
“Remove Code from Floating-Point to Integer Conversions That Wraps Out-Of-Range Values” on page
13-18
“Generate Reusable Code” on page 13-19
“Inline Named Constants” on page 13-20
“Reuse MATLAB Function Block Variables” on page 13-21
“Loop Unrolling Threshold” on page 13-21

Optimization Overview
Select the code generation optimization settings.

See Also

“Generate Structured Text from the Model Window” on page 1-9

13 Configuration Parameters for Simulink PLC Coder Models

13-16

Default Parameter Behavior
Transform numeric block parameters into constant inlined values in the generated code. This option
is available on the PLC Code Generation > Optimization pane in the Configuration Parameters
dialog box.

Description

Transform numeric block parameters into constant inlined values in the generated code.

Category: Optimization

Settings

Default: Tunable for GRT targets | Inlined for ERT targets

Inlined
Set Default parameter behavior to Inlined to reduce global RAM usage and increase
efficiency of the generated code. The code does not allocate memory to represent numeric block
parameters such as the Gain parameter of a Gain block. Instead, the code inlines the literal
numeric values of these block parameters.

Tunable
Set Default parameter behavior to Tunable to enable tunability of numeric block parameters
in the generated code. The code represents numeric block parameters and variables that use the
storage class Auto, including numeric MATLAB variables, as tunable fields of a global parameters
structure.

Tips

• Whether you set Default parameter behavior to Inlined or to Tunable, create parameter data
objects to preserve tunability for block parameters. For more information, see “Create Tunable
Calibration Parameter in the Generated Code” (Simulink Coder).

• When you switch from a system target file that is not ERT-based to one that is ERT-based, Default
parameter behavior sets to Inlined by default. However, you can change the setting of Default
parameter behavior later.

• When a top model uses referenced models, or if a model is referenced by another model:

• All referenced models must set Default parameter behavior to Inlined if the top model has
Default parameter behavior set to Inlined.

• The top model can specify Default parameter behavior as Tunable or Inlined.
• If your model contains an Environment Controller block, you can suppress code generation for the

branch connected to the Sim port if you set Default parameter behavior to Inlined and the
branch does not contain external signals.

Command-Line Information

Parameter:PLC_PLCEnableVarReuse
Type: string
Value: 'on' | 'off'
Default: 'on'

 PLC Coder: Optimization

13-17

See Also

“Generate Structured Text from the Model Window” on page 1-9

Signal Storage Reuse
Reuse signal memory. This option is available on the PLC Code Generation > Optimization pane in
the Configuration Parameters dialog box.

Settings

Default: on

 On
Reuses memory buffers allocated to store block input and output signals, reducing the memory
requirement of your real-time program.

 Off
Allocates a separate memory buffer for each block's outputs. This allocation makes block outputs
global and unique, which in many cases significantly increases RAM and ROM usage.

Tips

• This option applies only to signals with storage class Auto.
• Signal storage reuse can occur among only signals that have the same data type.
• Clearing this option can substantially increase the amount of memory required to simulate large

models.
• Clear this option if you want to:

• Debug a C-MEX S-function.
• Use a Floating Scope or a Display block with the Floating display option selected to inspect

signals in a model that you are debugging.
• If you select Signal storage reuse and attempt to use a Floating Scope or floating Display block

to display a signal whose buffer has been reused, an error dialog box opens.

Command-Line Information

Parameter:PLC_PLCEnableVarReuse
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Remove Code from Floating-Point to Integer Conversions That Wraps
Out-Of-Range Values
Enable code removal for efficient casts. This option is available on the PLC Code Generation >
Optimization pane in the Configuration Parameters dialog box.

13 Configuration Parameters for Simulink PLC Coder Models

13-18

Settings

Default: on

 On
Removes code from floating-point to integer conversions.

 Off
Does not remove code from floating-point to integer conversions.

Tips

Use this parameter to optimize code generation.

Command-Line Information

Parameter: PLC_PLCEnableEfficientCast
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Generate Reusable Code
Using this option, you can generate better reusable code for reusable subsystems. For instance, if
your model contains multiple instances of the same subsystem and some instances have constant
inputs, by default, the generated code contains separate function blocks for each instance. If you
select this option, the software does not consider whether the inputs to the subsystem are constant
and generates one function block for the multiple instances.

This option is available on the PLC Code Generation > Optimization pane in the Configuration
Parameters dialog box.

Settings

Default: off

 On
Generates better reusable code for reusable subsystems.

 Off
Reverts to its default behavior. Instead of a single reusable function block, the software generates
separate function blocks for individual instances of a reusable subsystem because of certain
differences in their inputs.

Tips

• If you find multiple function blocks in your generated code for multiple instances of the same
subsystem, select this option. The software performs better identification of whether two

 PLC Coder: Optimization

13-19

instances of a subsystem are actually the same and whether it can combine the multiple blocks
into one reusable function block.

• If different instances of a subsystem have different values of a block parameter, you cannot
generate reusable code. Clear this option or use the same block parameter for all instances.

• Despite selecting this option, if you do not see reusable code for different instances of a
subsystem, you can determine the reason. To determine if two reusable subsystems are identical,
the code generator internally uses a checksum value. You can compare the checksum values for
two instances of a subsystem and investigate why they are not identical.

To get the checksum values for the two instances that you expect to be identical, use the function
Simulink.SubSystem.getChecksum. If the checksum values are different, investigate the
checksum details to see why the values are not identical.

Command-Line Information

Parameter:PLC_GenerateReusableCode
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

• “Generate Structured Text from the Model Window” on page 1-9
• “Generated Code Structure for Reusable Subsystems” on page 2-4

Inline Named Constants
Using this option, you can control inlining of global named constants. By default, the generated code
contains named ssMethodType constants for internal states or other Simulink semantics. If you
select this option, the software replaces the named constants with its integer value.

This option is available on the PLC Code Generation > Optimization pane in the Configuration
Parameters dialog box.

Settings

Default: off

 On
Inlines named constants.

 Off
Reverts to its default behavior and uses named constants in the generated code.

Command-Line Information

Parameter:PLC_InlineNamedConstant
Type: string
Value: 'on' | 'off'
Default: 'off'

13 Configuration Parameters for Simulink PLC Coder Models

13-20

See Also

• “Generate Structured Text from the Model Window” on page 1-9
• “Generated Code Structure for Simple Simulink Subsystems” on page 2-2

Reuse MATLAB Function Block Variables
You can use this option to enable reuse of MATLAB function block variables in the generated code.

This option is available on the PLC Code Generation > Optimization pane in the Configuration
Parameters dialog box.

Settings

Default: off

 On
Generates code that reuses MATLAB Function block variables where appropriate.

 Off
Reverts to its default behavior and does not reuse variables in the generated code.

Command-Line Information

Parameter:PLC_ReuseMLFcnVariable
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

• “Generate Structured Text from the Model Window” on page 1-9
• “Generated Code Structure for MATLAB Function Block” on page 2-12

Loop Unrolling Threshold
Specify the minimum signal or parameter width for which a for loop is generated. This option is
available on the PLC Code Generation > Optimization pane in the Configuration Parameters
dialog box.

Settings

Default: 5

Specify the array size at which the code generator begins to use a for loop instead of separate
assignment statements to assign values to the elements of a signal or parameter array.

When the loops are perfectly nested loops, the code generator uses a for loop if the product of the
loop counts for all loops in the perfect loop nest is greater than or equal to this threshold.

 PLC Coder: Optimization

13-21

Command-Line Information

Parameter: PLC_RollThreshold
Type: string
Value: any valid value
Default: '5'

See Also

“Generate Structured Text from the Model Window” on page 1-9

13 Configuration Parameters for Simulink PLC Coder Models

13-22

PLC Coder: Identifiers

In this section...
“Identifiers Overview” on page 13-24
“Use Subsystem Instance Name as Function Block Instance Name” on page 13-24
“Override Target Default Maximum Identifier Length” on page 13-24
“Maximum Identifier Length” on page 13-25
“Override Target Default enum Name Behavior” on page 13-26
“Generate enum Cast Function” on page 13-26
“Use the Same Reserved Names as Simulation Target” on page 13-27
“Reserved Names” on page 13-27
“Externally Defined Identifiers” on page 13-28
“Preserve Alias Type Names for Data Types” on page 13-28

 PLC Coder: Identifiers

13-23

In this section...
“Inline Enum Cast Function” on page 13-29

Identifiers Overview
Select the automatically generated identifier naming rules.

See Also

“Generate Structured Text from the Model Window” on page 1-9

Use Subsystem Instance Name as Function Block Instance Name
Specify how you want the software to name the Function block instances it generates for the
subsystem. When you select this option, the software uses the subsystem instance name as the name
of the Function blocks in the generated code. By default, the software generates index-based instance
names.

This option is available on the PLC Code Generation > Identifiers pane in the Configuration
Parameters dialog box.

Settings

Default: off

 On
Uses the subsystem instance name as the name of the Function block instances in the generated
code.

 Off
Uses auto-generated index-based instance names for the Function blocks in the generated code.

Command-Line Information
Parameter: PLC_FBUseSubsystemInstanceName
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Override Target Default Maximum Identifier Length
If your custom target IDE version supports long name identifiers, you can use this option along with
the Maximum identifier length to specify the maximum number of characters in the generated
function, type definition, and variable names. By default, the software complies with the maximum
identifier length of standard versions of the target IDE and ignores unsupported values specified in
the Maximum identifier length.

13 Configuration Parameters for Simulink PLC Coder Models

13-24

This option is available on the PLC Code Generation > Identifiers pane in the Configuration
Parameters dialog box.

Settings

Default: off

 On
Override target default maximum identifier length in the generated code.

 Off
The generated code uses the default identifier length of the target IDE.

Command-Line Information
Parameter: PLC_OverrideDefaultNameLength
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Maximum Identifier Length
Specify the maximum number of characters in generated function, type definition, and variable
names. This option is available on the PLC Code Generation > Identifiers pane in the
Configuration Parameters dialog box.

Settings

Default: 31

Minimum: 31

Maximum: 256

You can use this parameter to limit the number of characters in function, type definition, and variable
names. Many target IDEs have their own restrictions for these names. Simulink PLC Coder complies
with target IDE limitations.

Command-Line Information
Parameter: PLC_RTWMaxIdLength
Type: int
Value: 31 to 256
Default: 31

See Also

“Generate Structured Text from the Model Window” on page 1-9

 PLC Coder: Identifiers

13-25

Override Target Default enum Name Behavior
Use this option to enable enum names to be used as the identifier names instead of enum values. The
PLC target IDE must support enum type.

This option is available on the PLC Code Generation > Identifiers pane in the Configuration
Parameters dialog box.

Settings

Default: off

 On
Override target default enum behavior and always have enum names instead of enum values.

 Off
The generated code uses the enum behavior of the target IDE.

Command-Line Information
Parameter: PLC_GenerateEnumSymbolicName
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Generate enum Cast Function
Autogenerate the enum type conversion code. The target PLC IDE must support enum type.

This option is available in the Configuration Parameters dialog box, PLC Code Generation >
Identifiers pane .

Settings

Default: off

 On
Simulink PLC Coder autogenerates the enum type conversion code.

 Off
Manually create a MATLAB function to convert the enum type value to an integer or to convert an
integer to an enum type value.

Command-Line Information
Parameter: PLC_GenerateEnumCastFunction
Type: string
Value: 'on' | 'off'
Default: 'off'

13 Configuration Parameters for Simulink PLC Coder Models

13-26

See Also

“Generate Structured Text from the Model Window” on page 1-9

Use the Same Reserved Names as Simulation Target
Specify whether to use the same reserved names as those specified in the Reserved names field of
the Simulation Target pane in the Configuration Parameters dialog box. This option is available on
the PLC Code Generation > Identifiers pane in the Configuration Parameters dialog box.

Settings

Default: off

 On
Uses the same reserved names as those specified in the Reserved names filed of the Simulation
Target pane in the Configuration Parameters dialog box.

 Off
Does not use the same reserved names as those specified in the Simulation Target >
Identifiers pane pane.

Command-Line Information
Parameter: PLC_RTWUseSimReservedNames
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Reserved Names
Enter the names of variables or functions in the generated code that you do not want to be used. This
option is available on the PLC Code Generation > Identifiers pane in the Configuration Parameters
dialog box.

Settings

Default: ()

Changes the names of variables or functions in the generated code to avoid name conflicts with
identifiers in custom code. Reserved names must be fewer than 256 characters in length.

Tips

• Start each reserved name with a letter or an underscore.
• Each reserved name must contain only letters, numbers, or underscores.
• Separate the reserved names by using commas or spaces.

 PLC Coder: Identifiers

13-27

Command-Line Information
Parameter: PLC_RTWReservedNames
Type: string
Value: string
Default: ''

See Also

“Generate Structured Text from the Model Window” on page 1-9

Externally Defined Identifiers
Specify the names of identifiers for which you want to suppress definitions. This option is available on
the PLC Code Generation > Identifiers pane in the Configuration Parameters dialog box.

Settings

Default: ()

Suppresses the definition of identifiers, such as those for function blocks, variables, constants, and
user types in the generated code. This suppression allows the generated code to refer to these
identifiers. When you import the generated code into the PLC IDE, you must provide these
definitions.

Tips

• Start each name with a letter or an underscore.
• Each name must contain only letters, numbers, or underscores.
• Separate the names by using spaces or commas.

Command-Line Information
Parameter: PLC_ExternalDefinedNames
Type: string
Value: string
Default: ''

See Also

• “Generate Structured Text from the Model Window” on page 1-9
• “Integrate Externally Defined Identifiers” on page 9-2
• Integrating User Defined Function Blocks, Data Types, and Global Variables

into Generated Structured Text

Preserve Alias Type Names for Data Types
Specify that the generated code must preserve alias data types from your model. This option is
available on the PLC Code Generation > Identifiers pane in the Configuration Parameters dialog
box.

Using the Simulink.AliasType class, you can create an alias for a built-in Simulink data type. If
you assign an alias data type to signals and parameters in your model, when you use this option, the
generated code uses your alias data type to define variables corresponding to the signals and
parameters.

13 Configuration Parameters for Simulink PLC Coder Models

13-28

matlab:plcdemo_external_symbols
matlab:plcdemo_external_symbols

For instance, you can create an alias SAFEBOOL from the base data type boolean. If you assign the
type SAFEBOOL to signals and parameters in your model, the variables in the generated code
corresponding to those signals and parameters also have the type SAFEBOOL. Using this alias type
SAFEBOOL, you can conform to PLCopen safety specifications that suggest using safe data types for
differentiation between safety-relevant and standard signals.

Settings

Default: off

 On
The generated code preserves alias data types from your model.

For your generated code to be successfully imported to your target IDE, the IDE must support
your alias names.

 Off
The generated code does not preserve alias types from your model. Instead, the base type of the
Simulink.AliasType class determines the variable data type in generated code.

Tips

The alias that you define for a Simulink type must have the same semantic meaning as the base
Simulink type. It must not be a data type already supported in Structured Text and semantically
different from the base Simulink type. For instance, WORD is a data type supported in Structured Text
but is semantically different from an integer type. If you define an alias WORD for a Simulink built-in
integer type, for instance uint16, and preserve the alias name, the type WORD that appears in your
generated code is used semantically as a WORD and not as an INT. The generated code has a different
meaning from the semantics of the model.

Command-Line Information
Parameter: PLC_PreserveAliasType
Type: string
Value: 'on' | 'off'
Default: 'off'

Inline Enum Cast Function
Use this option to inline the generated enum-to-integer or integer-to-enum function. By default, the
software generates an enum-to-integer or integer-to-enum function as a part of the generated code.
This option is available in the Configuration Parameters dialog box, PLC Code Generation >
Identifiers pane. Select the Generate enum cast function option.

Settings

Default: off

 On
Inline the generated enum cast function.

 Off
Do not inline the generated enum cast function.

 PLC Coder: Identifiers

13-29

Command-Line Information
Parameter: PLC_InlineEnumCastFunction
Type: string
Value: 'on' | 'off'
Default: 'off'

13 Configuration Parameters for Simulink PLC Coder Models

13-30

PLC Coder: Report

In this section...
“Report Overview” on page 13-31
“Generate Traceability Report” on page 13-32
“Generate Model Web View” on page 13-32
“Open Report Automatically” on page 13-33

Report Overview
After code generation, specify whether a report must be produced. Control the appearance and
contents of the report.

The code generation report shows a mapping between Simulink model objects and locations in the
generated code. The report also shows static code metrics about files, global variables, and function
blocks.

 PLC Coder: Report

13-31

See Also

“Generate Structured Text from the Model Window” on page 1-9

Generate Traceability Report
Specify whether to create a code generation report. This option is available on the PLC Code
Generation > Report pane in the Configuration Parameters dialog box.

Settings

Default: on

 On
Creates code generation report as an HTML file.

 Off
Suppresses creation of code generation report.

Command-Line Information
Parameter: PLC_GenerateReport
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Traceability Report Limitations

Simulink PLC Coder does not generate a traceability report file when generating Ladder Diagrams
from Stateflow charts. However, traceability report file is generated when generating Structured Text
from Stateflow charts.

Ladder Diagrams. charts. However, traceability report file is generated when generating Structured
Text from charts.

Generate Model Web View
To navigate between the code and the model within the same window, include the model web view in
the code generation report. This option is available on the PLC Code Generation > Report pane in
the Configuration Parameters dialog box.

You can share your model and generated code outside of the MATLAB environment. You must have a
Simulink Report Generator to include a Web view (Simulink Report Generator) of the model in the
code generation report.

Settings

Default: Off

13 Configuration Parameters for Simulink PLC Coder Models

13-32

 On
Includes model Web view in the code generation report.

 Off
Omits model Web view in the code generation report.

Command-Line Information
Parameter: PLC_GenerateWebView
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Open Report Automatically
Specify whether to open the code generation report automatically. This option is available on the PLC
Code Generation > Report pane in the Configuration Parameters dialog box.

Settings

Default: off

 On
Opens the code generation report as an HTML file.

 Off
Suppresses opening of the code generation report.

Command-Line Information
Parameter: PLC_LaunchReport
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

 PLC Coder: Report

13-33

PLC Coder:Interface

In this section...
“Interface Overview” on page 13-34
“Generate Logging Code” on page 13-35
“Keep Top-Level ssmethod Name the Same as the Non-Top Level Name” on page 13-35
“Remove Top-level Subsystem Ssmethod Type” on page 13-36
“Remove Initialization Statements for Externally Defined State Variables” on page 13-36
“Absolute-Time Temporal Logic” on page 13-37

Interface Overview
The PLC Code Generation > Interface category includes parameters for configuring the interface
of the generated code.

13 Configuration Parameters for Simulink PLC Coder Models

13-34

See Also

“Generate Structured Text from the Model Window” on page 1-9

Generate Logging Code
With this option, you can generate code with logging instrumentation to collect run-time data on
supported PLC targets. The PLC target IDEs must have support for inout variables. For Rockwell
Automation targets, you can set up an Open Platform Communications (OPC) server and use the
Simulation Data Inspector (SDI) in Simulink to visualize and monitor the logging data.

This option is available on the PLC Code Generation > Interface pane in the Configuration
Parameters dialog box.

Settings

Default: off

 On
Generate Function block logging code for supported targets.

 Off
No logging instrumentation is included in the generated code.

Command-Line Information
Parameter: PLC_GenerateLoggingCode
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Keep Top-Level ssmethod Name the Same as the Non-Top Level Name
Prevent renaming the SS_OUTPUT type to SS_STEP type from the top-level subsystem argument
interface. When you select this option, the software emits the same ssMethod type in the code
generation for both top and non-top level blocks.

This option is available on the PLC Code Generation > Interface pane in the Configuration
Parameters dialog box.

Settings

Default: off

 On
Generated code for top-level block does not contain the SS_STEP type in generated code.

 Off
Generated code contains SS_STEP AND SS_OUTPUT type function blocks.

 PLC Coder:Interface

13-35

Command-Line Information
Parameter: PLC_RemoveSSStep
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

• “Distributed Model Code Generation Options” on page 24-2
• “Generated Code Structure for PLC_RemoveSSStep” on page 24-3

Remove Top-level Subsystem Ssmethod Type
Use this option to remove the ssmethod type from the top-level subsystem argument interface. When
this option is enabled, the software removes the ssmethod type and converts the subsystem
initialization code from switch case statement to conditional if statement. As a result, the generated
code has the same interface as the model subsystem.

This option is available on the PLC Code Generation > Interface pane in the Configuration
Parameters dialog box.

Settings

Default: off

 On
Remove top level function block ssmethod type in generated code.

 Off
Generated code contains ssmethod type Function block and switch case statements.

Command-Line Information
Parameter: PLC_RemoveTopFBSSMethodType
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-9

Remove Initialization Statements for Externally Defined State
Variables
Use this option to remove initialization assignment statements for variables that have storage class
ImportedExtern and ExportedGlobal from the generated code.

Mark ExportedGlobal variables as externally defined. For more information, see “Externally
Defined Identifiers” on page 13-28

13 Configuration Parameters for Simulink PLC Coder Models

13-36

Settings

Default: off

 On
Remove from the generated code initialization assignment statements for variables that have
storage class ImportedExtern and ExportedGlobal.

 Off
Generated code contains initialization assignment statements for variables that have storage
class ImportedExtern and ExportedGlobal.

Command-Line Information
Parameter: PLC_PreventExternalVarInitialization
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

• “Distributed Model Code Generation Options” on page 24-2
• “Generated Code Structure for PLC_PreventExternalVarInitialization” on page 24-5

Absolute-Time Temporal Logic
Use this option to specify if the generated code uses the target timer or a target-independent counter
for Stateflow absolute-time temporal logic semantics implementation.

Settings

Default: Target Timer

Target Timer
Generated code uses the target timer to implement Stateflow absolute-time temporal logic
semantics.

Target-independent Counter
Generated code contains a target-independent integer counter to implement Stateflow absolute-
time temporal logic semantics.

Command-Line Information
Parameter: PLC_AbsTimeTemporalLogic
Type: character vector
Value: 'timer' | 'counter'
Default: 'timer'

Limitations

• Absolute-time temporal logic does not support stateflow chart using global clocks.
• Testbench code verification can fail for absolute-time temporal logic using floating-point

comparison operations.

 PLC Coder:Interface

13-37

External Mode

• “External Mode Logging” on page 14-2
• “Generate Structured Text Code That Has Logging Instrumentation” on page 14-3
• “Visualize and Monitor Logging Data by using Simulation Data Inspector” on page 14-7

14

External Mode Logging
External mode logging uses specific code that Simulink PLC Coder™ generates. External mode
logging can save system states, outputs, and simulation time at each model execution time step.

You can verify your generated code by collecting run-time data while executing the code on the target
PLC IDE. Collect run-time data on PLC targets by using external mode logging and visualize the run-
time data by using Simulation Data Inspector.

Generate code from Simulink models with external mode logging enabled by using the Generate
logging code feature. To use external mode logging, the target PLC IDE must support InOut
variables. These target PLC IDEs, support external mode logging:

• 3S-Smart Software Solutions CoDeSys Version 2.3
• 3S-Smart Software Solutions CoDeSys Version 3.5
• Rockwell Automation RSLogix 5000
• Rockwell Automation Studio 5000
• Beckhoff TwinCAT 2.11
• Beckhoff TwinCAT 3
• Generic
• PLCopen XML
• Rexroth IndraWorks
• OMRON Sysmac Studio

Visualize the logging data for Rockwell Automation targets, by using an Open Communications
Platform (OPC) server and Simulation Data Inspector. The OPC Toolbox™ is required to run the
external mode visualization.

See Also

More About
• “Generate Structured Text Code That Has Logging Instrumentation” on page 14-3
• “Visualize and Monitor Logging Data by using Simulation Data Inspector” on page 14-7

14 External Mode

14-2

Generate Structured Text Code That Has Logging
Instrumentation

This example shows how to generate code for the Rockwell Automation Studio 5000 IDE by using
external mode logging.

1 Create a Simulink model ext_demo1.slx that has a top-level subsystem with two child
subsystems, S1, S2, a MATLAB Function block, and a Stateflow chart.

The S1 and S2 blocks are identical and contain a simple feedback loop.The Stateflow chart
contains a simple state machine.

 Generate Structured Text Code That Has Logging Instrumentation

14-3

2 The MATLAB function block implements this code:

function y = fcn
persistent i;

if isempty(i)
 i=0;
end

if (i>20)
 i = 0;
else
 i=i+1;
end

y = sin(pi*i/10);
3 Select the top-level subsystem and open the PLC Coder app. On the PLC Code tab, click

Settings > PLC Code Generation and select the Target IDE as Rockwell Studio 5000:
AOI. On the Interface pane, select Generate logging code. Click OK.

14 External Mode

14-4

4 In the model, select the top subsystem block. On the PLC Code tab, click Generate PLC Code.

You generate the ext_demo.L5X code for the top subsystem block, the children S1, S2, the
MATLAB function, and Stateflow chart blocks. Also generated is the plc_log_data.mat, which
has the external logging data information.

 Generate Structured Text Code That Has Logging Instrumentation

14-5

To run the ext_demo.L5X file in the Rockwell Automation Studio 5000 IDE, see “Visualize and
Monitor Logging Data by using Simulation Data Inspector” on page 14-7.

See Also

More About
• “External Mode Logging” on page 14-2
• “Visualize and Monitor Logging Data by using Simulation Data Inspector” on page 14-7

14 External Mode

14-6

Visualize and Monitor Logging Data by using Simulation Data
Inspector

This example shows how to collect PLC run-time data for Rockwell Automation targets. Set up an
Open Platform Communications (OPC) server. Use the Simulation Data Inspector in Simulink to
visualize and monitor the logging data.

Set Up and Download Code to Studio 5000 IDE
1 Start the Studio 5000 IDE and create a project with the name ext_demo1.
2 Import the generated ext_demo.L5X to the Add-On Instructions tree node of the project. For

more information, see “Generate Structured Text Code That Has Logging Instrumentation” on
page 14-3.

3 In the MainProgram node, delete the ladder MainRoutine and create an ST MainRoutine
node.

4 In ST MainRoutine, define the tags listed in this table.

Tag Name Tag Type
i0_Subsystem Subsystem
i0_Subsystem_val Subsystem_log
Init BOOL
Y1 REAL
Y2 REAL
Y3 DINT

5 In Studio 5000 IDE, i0_Subsystem tag is the instance of the top subsystem AOI and the
i0_Subsystem_val tag is the logging data with structure type Subsystem_log. Set the initial
value of init tag to 1.

6 Double-click the MainRoutine tree node and type in the code in the image. The statement
Subsystem(i0_Subsystem, 23, Y1, Y2, Y3, i0_Subsystem_val) calls the logging
method (ssmethod value=23) to log in data to the i0_Subsystem_val tag.

 Visualize and Monitor Logging Data by using Simulation Data Inspector

14-7

7 Compile the project in Studio 5000 IDE and download to the PLC target.

Configure RSLinx OPC Server
1 Start RSLinx Classic Gateway and select the menu item DDE/OPC->Topic Configuration.
2 In the dialog box, create a topic ext_demo1 by clicking the New button. Select the target PLC

from the PLC list.

3 Click the Yes button to update the topic (ext_demo1).
4 To verify that the log data is set up on the OPC server, select the menu item Edit->Copy

DDE/OPC Link. The i0_Subsystem_val tag for log data must be shown on the RSLinx OPC
Server.

Stream and Display Live Log Data by Using PLC External Mode
Commands
After the RSLinx OPC Server is configured, you can use the PLC external mode commands to connect
to the server, stream the logging data, and display live logging data on the Simulation Data Inspector.
The log data information is in the plc_log_data.mat file, which you can find in the plcsrc folder.
You can use the plcdispextmodedata function to display the contents of the MAT-file. In the
MATLAB Command Window, type:

>>cd plcsrc
>>plcdispextmodedata plc_log_data.mat

Log data:
#1: Y1: LREAL
#2: Y2: LREAL
#3: Y3: LREAL
#4: io_Chart.out: DINT

14 External Mode

14-8

#5: io_Chart.ChartMode: DINT
#6: io_Chart.State_A: BOOL
#7: io_Chart.State_B: BOOL
#8: io_Chart.State_C: BOOL
#9: io_Chart.State_D: BOOL
#10: io_Chart.is_active_c3_Subsystem: USINT
#11: io_MATLABFunction.y: LREAL
#12: io_MATLABFunction.i: LREAL
#13: io_S1.y: LREAL
#14: io_S1.UnitDelay_DSTATE: LREAL
#15: i1_S1.y: LREAL
#16: i1_S1.UnitDelay_DSTATE: LREAL

The format for the log data information is index number, name, and type. The log data for non-top
subsystem function block output and state variables is named by using dot notation to represent the
function block instances that own the data. You can use the index and name of the log data with the
plcrunextmode command to specify a subset of log data for streaming and visualization.

To connect to the OPC server and stream log data, use the plcrunextmode function. For example,
executing the plcrunextmode ('localhost', 'studio5000', 'ext_demo1',
'plc_log_data.mat'); command streams live log data for the example model into Simulation
Data Inspector.

The plcrunextmode command continues to run and stream log data. To exit streaming, at the
MATLAB command prompt, type Ctrl-C.

See Also
plcdispextmodedata | plcrunextmode

More About
• “External Mode Logging” on page 14-2
• “Generate Structured Text Code That Has Logging Instrumentation” on page 14-3

 Visualize and Monitor Logging Data by using Simulation Data Inspector

14-9

Ladder Diagram Instructions

15

Instructions Supported in Ladder Diagram
The supported ladder diagram instructions are useful while importing the ladder into Simulink. The
instructions can be categorised into two:

• Instructions that are implemented in Simulink using ladder diagram blocks with same name
• Instructions that are implemented in Simulink using other ladder diagram blocks.

The table lists the instructions that map to blocks in Simulink

L5X Instructions Ladder Model Blocks
ADD ADD Block
AFI AFI Block
AND AND Block
CLR CLR Block
COP COP Block
CTD CTD Block
CTU CTU Block
DIV DIV Block
EQU EQU Block
FBC FBC Block
FLL FLL Block
GEQ GEQ Block
GRT GRT Block
JMP JMP Block
LBL LBL Block
LEQ LEQ Block
LES LES Block
MCR MCR Block
MOV MOV Block
MUL MUL Block
NCP NCP Block
NEQ NEQ Block
NOT NOT Block
OR OR Block
OTE OTE Block
OTL OTL Block
OTU OTU Block
RES RES Block
RTO RTO Block

15 Ladder Diagram Instructions

15-2

L5X Instructions Ladder Model Blocks
SUB SUB Block
TND TND Block
TOF TOF Block
TON TON Block
XIC XIC Block
XIO XIO Block

The special instructions that are implemented using another block in Simulink are:

• JSR instruction is implemented by using a Subroutine block.
• AOI call instruction is implemented by using an Inline AOI block

 Instructions Supported in Ladder Diagram

15-3

Ladder Diagram Blocks

16

Ladder Diagram Blocks
The Ladder Diagram Blocks that are a part of Ladder Diagram Library are listed.

XIC XIO OTE OTL
OTU TON TOF RTO
CTU CTD RES JMP
LBL TND AFI NOP
MCR ADD SUB MUL
DIV FRD CPT AND
OR NOT ONS OSR
OSF NEQ EQU
LEQ GEQ LES GRT
MOV CLR COP FLL
Power Rail Start Power Rail Terminal RungTerminal Junction
Variable Read Variable Write PLC Controller Task
Program Subroutine Function Block (AOI)

16 Ladder Diagram Blocks

16-2

Fixed Point Code Generation

• “Block Parameters” on page 17-2
• “Model Parameters” on page 17-3
• “Limitations” on page 17-4

17

Block Parameters
1 If the block in the subsystem has a Signal Attributes tab, navigate to that tab.
2 For the Integer rounding mode parameter, select Round.
3 Clear the Saturate on integer overflow check box.
4 For the Output data type parameter, select a fixed-point data type.
5 Click the Data Type Assistant button.
6 For the Word length parameter, enter 8, 16, or 32.
7 For the Mode parameter, select Fixed point.
8 For the Scaling parameter, select Binary point.

9 Click OK.

17 Fixed Point Code Generation

17-2

Model Parameters
1 In model Configuration Parameters dialog box, click the Hardware Implementation node.
2 For the Device vendor parameter, select Generic.
3 For the Device type, select Custom.
4 For the Signed integer division rounds to, select Zero.
5 For the Number of bits, set char to 16.

 Model Parameters

17-3

Limitations
1 64-bit fixed-point data type is not supported.

17 Fixed Point Code Generation

17-4

Generating PLC Code for Multirate
Models

18

Multirate Model Requirements for PLC Code Generation
In this section...
“Model Configuration Parameters” on page 18-2
“Limitations” on page 18-2

Model Configuration Parameters
Before generating Structured Text from a multirate model, you must configure the model as follows:

• Solver options that are recommended or required for PLC code generation:

• Type:Fixed-step.
• Solver:Discrete(no continuous states). Other fixed-step solvers could be selected, but

this option is usually best for simulating discrete systems.
• Tasking mode: Must be explicitly set to SingleTasking. Do not set Tasking modeto Auto

• Change any continuous time signals in the top level subsystem to use discrete fixed sample times.

When you deploy code generated from a multirate model, you must run the code at the fundamental
sample rate.

Limitations
These are the limitations when generating Structured Text from multirate models:

• The B&R Automation Studio IDE is not supported for multirate model code generation.

18 Generating PLC Code for Multirate Models

18-2

Generating PLC Code for MATLAB
Function Block

• “Configuring the rand function for PLC Code generation” on page 19-2
• “Width block requirements for PLC Code generation” on page 19-3
• “Workspace Parameter Data Type Limitations” on page 19-4
• “Limitations” on page 19-5

19

Configuring the rand function for PLC Code generation
Simulink PLC Coder generates Structured Text code for MATLAB Function blocks and Stateflow
charts that use rand functions from the library. The rand function is implemented using a pseudo
random number generator that only works with PLC IDEs supporting the uint32 data type. The
software has conformance checks to report diagnostics for incompatible targets. Currently, the
following targets have been tested for rand function support.

• 3S-Smart Software Solutions CODESYS Version 2.3 or 3.3 or 3.5 (SP4 or later)
• B&R Automation Studio 3.0 or 4.0
• Beckhoff TwinCAT 2.11 or 3
• OMRON Sysmac Studio Version 1.04, 1.05, 1.09 or 1.12
• Rexroth IndraWorks version 13V12 IDE
• Generic
• PLCopen XML

19 Generating PLC Code for MATLAB Function Block

19-2

Width block requirements for PLC Code generation
Use a MATLAB Function block instead. In the MATLAB function on the block, use the length
function to compute input vector width.

 Width block requirements for PLC Code generation

19-3

Workspace Parameter Data Type Limitations
If the data type of the MATLAB work space parameter value does not match that of the block
parameter used in your model, the value of the variable in the generated code is set to zero.

If you specify the type of the Simulink.Parameter object by using the DataType property, use a
typed expression when assigning a value to the parameter object. For example, if the
Simulink.Parameter object K1 is used to store a value of the type single, use a typed expression
such as single(0.3) when assigning a value to K1.

K1 = Simulink.Parameter;
K1.Value = single(0.3);
K1.StorageClass = 'ExportedGlobal';
K1.DataType = 'single';

19 Generating PLC Code for MATLAB Function Block

19-4

Limitations
These are the limitations when generating Structured Text from MATLAB Fubnction blocks :

• Cell arrays in MATLAB Function blocks
• In MATLAB Function blocks, only standard MATLAB functions are supported. Functions from

toolboxes have not been tested and may result in issues during code generation or produce
incorrect results. For a list of standard functions supported for code generation, see the items
listed under the MATLAB category in the “Functions and Objects Supported for C/C++ Code
Generation” table.

 Limitations

19-5

Model Architecture and Design

• “Fixed Point Simulink PLC Coder Structured Text Code Generation” on page 20-2
• “Generating Simulink PLC Coder Structured Text Code For Multirate Models” on page 20-7
• “MATLAB Function Block Simulink PLC Coder Structured Text Code Generation” on page 20-9

20

Fixed Point Simulink PLC Coder Structured Text Code
Generation

In this section...
“Block Parameters” on page 20-2
“Model Parameters” on page 20-3
“Limitations” on page 20-4

Block Parameters
At the MATLAB command prompt type plcdemo_fixed_point. Once the example model opens ,
follow these instructions to configure the model for Structured Text code generation.

1 If the block in the subsystem has a Signal Attributes tab, navigate to that tab and jump to step
3.

2 If there are no blocks in the subsystem with a Signal Attributes tab use the Data Type
Conversion block. Add the Data Type Conversionblock to the model and continue to the next
step.

3 For the Integer rounding mode parameter, select Round.
4 Clear the Saturate on integer overflow check box.
5 For the Output data type parameter, select a fixed-point data type.
6 Click the Data Type Assistant button .
7 For the Word length parameter, enter 8, 16, or 32.
8 For the Mode parameter, select Fixed point.
9 For the Scaling parameter, select Binary point.

20 Model Architecture and Design

20-2

10 Click OK.

Model Parameters
1 In the Model Configuration Parameters dialog box, click the Hardware Implementation node.
2 For the Device vendor parameter, select Generic or Custom Processor. If you select Custom

Processor proceed to step 4.
3 For the Device type, select Custom.
4 For the Signed integer division rounds to, select Zero.
5 For the Number of bits, set char to 16.

 Fixed Point Simulink PLC Coder Structured Text Code Generation

20-3

Limitations
• 64 bit fixed-point data type not supported.

20 Model Architecture and Design

20-4

• The data type and value type must match for fixed-point tunable parameters of type
Simulink.Parameter.

• Scaling parameter type Slope and bias is not supported for code generation.

You are now ready to:

• “Prepare Model for Structured Text Generation” on page 1-3
• “Check System Compatibility for Structured Text Code Generation” on page 1-6

 Fixed Point Simulink PLC Coder Structured Text Code Generation

20-5

• “Generate and Examine Structured Text Code” on page 1-9

20 Model Architecture and Design

20-6

Generating Simulink PLC Coder Structured Text Code For
Multirate Models

Multirate Model Requirements for PLC Code Generation
At the MATLAB command prompt type in plcdemo_multirate. Once the demo model opens up
follow the instructions below to configure the model for Structured Text code generation:

Model Configuration Parameters

Before generating Structured Text from a multirate model, you must configure the model as follows:

• Solver options that are recommended or required for PLC code generation:

• Type:Fixed-step.
• Solver:Discrete(no continuous states). Other fixed-step solvers could be selected, but

this option is usually best for simulating discrete systems.
• Tasking mode: Must be explicitly set to Single Tasking. Do not set Tasking modeto Auto

• Change any continuous time input signals in the top level subsystem to use discrete fixed sample
times.

• In the top-level model, right-click the Subsystem block and select Block Parameters
(Subsystem).

• In the resulting block dialog box, select Treat as atomic unit.

 Generating Simulink PLC Coder Structured Text Code For Multirate Models

20-7

When you deploy code generated from a multirate model, you must run the code at the fundamental
sample rate.

Limitations

The B&R Automation Studio does not support structured text code generation from multirate models.

You are now ready to:

• “Check System Compatibility for Structured Text Code Generation” on page 1-6
• “Generate and Examine Structured Text Code” on page 1-9

20 Model Architecture and Design

20-8

MATLAB Function Block Simulink PLC Coder Structured Text
Code Generation

In this section...
“Configuring the rand function for PLC Code Generation” on page 20-9
“SimulinkWidth Block Requirements for PLC Code generation” on page 20-9
“Workspace Parameter Data Type Limitations” on page 20-9
“Limitations” on page 20-9

Configuring the rand function for PLC Code Generation
Simulink PLC Coder generates structured text code for MATLAB Function blocks and Stateflow
charts that use the MATLAB rand function. You implement the rand function by using a pseudo
random number generator that works with PLC IDEs supporting the uint32 data type. The software
has conformance checks to report diagnostics for incompatible targets. These targets have been
tested for rand function support.

• 3S-Smart Software Solutions CODESYS Version 2.3 or 3.3 or 3.5 (SP4 or later)
• B&R Automation Studio 3.0 or 4.0
• Beckhoff TwinCAT 2.11 or 3
• OMRON Sysmac Studio Version 1.04, 1.05, 1.09 or 1.12
• Rexroth IndraWorks version 13V12 IDE
• PLCopen XML

SimulinkWidth Block Requirements for PLC Code generation
Instead of using the Simulink Width block , inside the MATLAB Functionuse the MATLAB length
function to compute the input vector width.

Workspace Parameter Data Type Limitations
If the data type of the MATLAB work space parameter value does not match that of the block
parameter in your model, the value of the variable in the generated code is set to zero.

If you specify the type of the Simulink.Parameter object by using the DataType property, use a
typed expression when assigning a value to the parameter object. For example, if the
Simulink.Parameter object K1 stores a value of the type single, use a typed expression such as
single(0.3) when assigning a value to K1.

K1 = Simulink.Parameter;
K1.Value = single(0.3);
K1.StorageClass = 'ExportedGlobal';
K1.DataType = 'single';

Limitations
When generating structured text from MATLAB Function blocks, these are the limitations :

 MATLAB Function Block Simulink PLC Coder Structured Text Code Generation

20-9

• Cell arrays in MATLAB Function blocks are not supported.
• If you want to use a function from a toolbox within the MATLAB Function block, you must check

the toolbox function page to see if that block supports code generation from Simulink PLC Coder.
• When generating a testbench for models that use the rand function , different rand output values

may be generated when gathering test vectors vs code generation, leading to testbench
verification failures . To prevent these failures make sure that the rand output value remains
constant across different model compilations.

20 Model Architecture and Design

20-10

PLC Coder Code Deployment

• “Deploy Structured Text” on page 21-2
• “Deploy Ladder Diagram” on page 21-5

21

Deploy Structured Text
In this section...
“Learning Objectives” on page 21-2
“Prerequisites” on page 21-2
“Workflow” on page 21-2
“Importing Generated Structured Text Code Manually” on page 21-2

Using Simulink PLC Coder, you can generate structured text and test bench code, and then import
the generated code into the target IDE.

Learning Objectives
In this tutorial you learn how to:

• Open the plcdemo_simple_subsystem model and prepare the model for code generation.
• Verify the code that you generated.
• Automatically or manually import your generated code into your target IDE.

Prerequisites
• Simulink PLC Coder
• Target IDE folder location (for automatic import).

Workflow
1 Open the plcdemo_simple_subsystem model.
2 Open the model settings and set Solver Selection to Fixed-step and Solver to discrete(no

continuous states).
3 If your target IDE is in the “PLC IDEs for Importing Code Automatically” on page 1-17 , see

“Generate and Automatically Import Structured Text Code” on page 1-17. Otherwise , see
“Importing Generated Structured Text Code Manually” on page 21-2

Importing Generated Structured Text Code Manually
If your target IDE does not automatically import generated code:

1 Right-click the Subsystem block and select PLC Code > Options.

The Configuration Parameters dialog box is displayed.

21 PLC Coder Code Deployment

21-2

2 On the PLC Code Generation pane, select an option from the Target IDE list, for example, 3S
CoDeSys 2.3.

The default Target IDE list displays the full set of supported IDEs. To see a reduced subset of the
target IDEs supported by Simulink PLC Coder, disable the option Show full target list. To
customize this list, use the plccoderpref function.

3 Click Apply.
4 Click Generate code.

This button:

• Generates Structured Text code (same as the PLC Code > Generate Code for Subsystem
option)

• Stores generated code in model_name.exp (for example,
plcdemo_simple_subsystem.exp)

When code generation is complete, a View diagnostics hyperlink appears at the bottom of the
model window. Click this hyperlink to open the Diagnostic Viewer window.

 Deploy Structured Text

21-3

This window has links that you can click to open the associated files. For more information, see
“Files Generated by Simulink PLC Coder” on page 1-14.

5 To import generated code into your target IDE import the generated files manually into your
target IDE.

21 PLC Coder Code Deployment

21-4

Deploy Ladder Diagram
In this section...
“Learning Objectives” on page 21-5
“Prerequisites” on page 21-5
“Workflow” on page 21-5
“Importing Generated Ladder Diagram Code Manually” on page 21-5

UsingSimulink PLC Coder you can generate Structured Text, along with test bench code and import
the generated code into the target IDE.

Learning Objectives
In this tutorial you will learn how to:

• Open the plcdemo_ladder_timers model and prepare the model for code generation.
• Verify the code you generated.
• Have your generated code either automatically or manually imported into your target IDE.

Prerequisites
• Simulink PLC Coder
• You have access to either Rockwell Automation RSLogix 5000 or Studio 5000 IDE.

Workflow
1 Open the plcdemo_ladder_timers model.
2 Open the model settings and set Solver Selection to Fixed-step and Solver to discrete(no

continuous states).
3 See “Importing Generated Ladder Diagram Code Manually” on page 21-5

You can manually import the generated L5X file into RSLogix 5000 or Studio 5000 IDEs.

Importing Generated Ladder Diagram Code Manually
For L5X import file generation:

1 Right-click the Motor Controller block and select PLC Code > Options.

This displays the PLC Code Generation configuration parameters window:

 Deploy Ladder Diagram

21-5

2 On the PLC Code Generation pane, from the Target IDE list, select either Rockwell Studio
5000:AOI or Rockwell RSLogix5000:AOI.

3 In Target IDE Path, enter the path to the folder where you want the generated L5X file to be
saved. In, Code Output Directory, enter the name of the folder to save the generated L5X file.

4 Click Apply.
5 Right-click the Motor Controller block and select PLC CodeGenerate Code for

Subsystem .
6 Upon, completion of code generation the Diagnostic window displays a message with the path to

the generated L5X file.

21 PLC Coder Code Deployment

21-6

 Deploy Ladder Diagram

21-7

Simulink PLC Coder Structured Text
Code Generation For Simulink Data
Dictionary (SLDD)

• “Structured Text Code Generation Support for Simulink Data Dictionary” on page 22-2
• “Generate Structured Text Code For Simulink Data Dictionary Defined Model Parameters”

on page 22-3

22

Structured Text Code Generation Support for Simulink Data
Dictionary

Simulink Data Dictionary (SLDD) is the preferred Model-Based-Design (MBD) data modeling and
management tool. SLDD provides advantages such as data separation, logical partitioning,
traceability, and so on. To achieve traceability between your generated code and model, and for code
reusability and model and data sharing, use SLDD

Limitations
Simulink PLC Coder does not support:

• The mixed use of the base workspace and SLDD files. Use the Simulink migration utility to
migrate your entire base workspace to SLDD files.

• Model workspace parameters and signals for code generation.
• MATLAB variables in SLDD files for code generation. To generate code convert these variables to

Simulink.Parameter objects.

Simulink.parameter types that have StorageClass options other than ExportedGlobal and
ImportedExtern are auto converted to ExportedGlobal StorageClass during code generation.

See Also

More About
• “What Is a Data Dictionary?”
• “Generate Structured Text Code For Simulink Data Dictionary Defined Model Parameters” on

page 22-3
• Simulink.Parameter
• Simulink.Signal

22 Simulink PLC Coder Structured Text Code Generation For Simulink Data Dictionary (SLDD)

22-2

Generate Structured Text Code For Simulink Data Dictionary
Defined Model Parameters

In this section...
“Learning Objectives” on page 22-3
“Requirements” on page 22-3
“Workflow” on page 22-3

Learning Objectives
In this tutorial, you learn how to:

• Open the plcdemo_tunable_params model and migrate the model to use Simulink Data
Dictionary (SLDD).

• Generate code for the model.

Requirements
• Base workspace variable definition must match the variable definition in the SLDD file. If there is

a mismatch, Simulink PLC Coder displays an error during the code generation process.
• If your model has a Data Store Memory(DSM) object, you must have a matching

Simulink.Signal object in the SLDD file.

Workflow
Migrate the plcdemo_tunable_params model base workspace variables to an SLDD file for code
generation:

Note Copy the plcdemo_tunable_params model to your current working directory prior to
starting the workflow.

1 Open the plcdemo_tunable_params model .
2 From the Simulink Editor Modeling tab, click Model Explorer.
3 Under the Model Hierarchy pane, click Base Workspace . The Contents pane displays the

base workspace variables.
4 Right-click K1, K2, and K3. Choose the Convert to parameter object option to convert

them to the Simulink.Parameter type.
5 Right-click plcdemo_tunable_params, and then select Properties.
6 Select the External Data tab.
7 Click New. Enter the file name as plcdemo_tunable_params.
8 Click the Migrate data button. Then click Apply in response to the Link Model to Data

Dictionarymessage and Migrate in response to the Migrate Data message.
9 Click OK.

 Generate Structured Text Code For Simulink Data Dictionary Defined Model Parameters

22-3

10
To open the dictionary, in the Simulink Editor, click the model data badge in the bottom left
corner, then click the External Data link. To inspect the contents of the dictionary, in the Model
Explorer Model Hierarchy pane, under the External Data node, expand the dictionary node.

To generate code for the model, see “Generate and Examine Structured Text Code” on page 1-9 .

See Also

More About
• Simulink.Parameter
• Simulink.Signal
• Data Store Memory
• “Migrate Models to Use Simulink Data Dictionary”
• “Structured Text Code Generation Support for Simulink Data Dictionary” on page 22-2

22 Simulink PLC Coder Structured Text Code Generation For Simulink Data Dictionary (SLDD)

22-4

Simulink PLC Coder Structured Text
Code Generation For Enumerated Data
Type

• “Structured Text Code Generation for Enum To Integer Conversion” on page 23-2
• “IDE Limitations” on page 23-3

23

Structured Text Code Generation for Enum To Integer
Conversion

Autogenerate structured text code for enum to integer conversion model.

Load enum class

For this example, the myEnum.m script loads the enum class definition. Place this script file in the
same project folder as the plc_enum_to_int model file.

Open the model

open_system('plc_enum_to_int.slx')

See Also

More About
• “Use Enumerated Data in Simulink Models”
• “Code Generation for Enumerations”

23 Simulink PLC Coder Structured Text Code Generation For Enumerated Data Type

23-2

IDE Limitations
The following IDEs support enum data type:

• 3S-Smart Software Solutions CODESYS Version 2.3 or 3.3 or 3.5 (SP4 or later). To generate code
enable “Generate enum Cast Function” on page 13-26 option.

• PHOENIX CONTACT Software MULTIPROG 5.0 or 5.50. To generate code enable “Override Target
Default enum Name Behavior” on page 13-26 and “Generate enum Cast Function” on page 13-26
options.

• Selectron CAP1131 IDE. To generate code enable “Override Target Default enum Name Behavior”
on page 13-26 and “Generate enum Cast Function” on page 13-26 options.

• Beckhoff TwinCAT 2.11 or 3. To generate code enable “Override Target Default enum Name
Behavior” on page 13-26 and “Generate enum Cast Function” on page 13-26 options.

• Rexroth IndraWorks version 13V12 IDE. To generate code enable “Override Target Default enum
Name Behavior” on page 13-26 and “Generate enum Cast Function” on page 13-26 options.

See Also

 IDE Limitations

23-3

Distributed Code Generation with
Simulink PLC Coder

• “Distributed Model Code Generation Options” on page 24-2
• “Generated Code Structure for PLC_RemoveSSStep” on page 24-3
• “Generated Code Structure for PLC_PreventExternalVarInitialization” on page 24-5
• “PLC_RemoveSSStep for Distributed Code Generation” on page 24-7
• “Structured Text Code Generation for Subsystem Reference Blocks” on page 24-10
• “Distributed Code Generation Limitations” on page 24-12

24

Distributed Model Code Generation Options
Distributed models allow you to model complex systems as individual components and simulate the
components at different sample times or cycle rates. The Simulink PLC Coder distributed model code
generation options allow you to generate structured text code for individual components of the model
and integrate the generated code externally. Use this table to decide the code generation option to
use based on your distributed model design and requirements.

Goal Option
Generate code for individual model subsystems
and integrate the generated code externally.

“Keep Top-Level ssmethod Name the Same as the
Non-Top Level Name” on page 13-35

Prevent initialization of externally defined
variables.

“Remove Initialization Statements for Externally
Defined State Variables” on page 13-36

The distributed code generation options are model-specific, and when selected at the top level, are
enabled for all the model subsystems. Once you enable the option, it stays on. When generating code
for individual subsystems, you might see unintended behavior in the generated code due to the option
remaining on.

See Also

More About
• “Generated Code Structure for PLC_RemoveSSStep” on page 24-3
• “Generated Code Structure for PLC_PreventExternalVarInitialization” on page 24-5

24 Distributed Code Generation with Simulink PLC Coder

24-2

Generated Code Structure for PLC_RemoveSSStep
The example shows you how to enable the PLC_RemoveSSStep option for your model, generate code
and display the comparison between code generated with the PLC_RemoveSSStep option enabled
and then disabled.

1 Open the UsePLC_RemoveSSStepforDistributedCode GenerationExample example:

openExample('plccoder/UseRemoveSSStepForDistributedCodeGenerationExample')

.
2 Copy all the model files to a folder of your choice.
3 Open the mSystemIntegration model.
4 Open the Simulink PLC Coder app, and then select the Subsystem1 block. .
5 Click Settings. Navigate to PLC Code Generation > Identifiers. Select the Keep top level

ssMethod name same as non-top level check box.
6 Click OK.
7 Click Generate PLC Code.
8 Select the Subsystem1 block.
9 Click Settings. Navigate to PLC Code Generation > Identifiers. Clear the Keep top level

ssMethod name same as non-top level check box.
10 Click Generate PLC Code.

This image shows a comparison between the code generated with PLC_RemoveSSStep enabled, and
then disabled. Removing SS_STEP enables easier external code integration of the different
subsystems because they all the same ssMethodType.

See Also
“Keep Top-Level ssmethod Name the Same as the Non-Top Level Name” on page 13-35

 Generated Code Structure for PLC_RemoveSSStep

24-3

More About
• “Distributed Model Code Generation Options” on page 24-2

24 Distributed Code Generation with Simulink PLC Coder

24-4

Generated Code Structure for
PLC_PreventExternalVarInitialization

The example shows you how to enable the PLC_PreventExternalVarInitialization option for
your model, generate code and display the comparison between code generated with the
PLC_PreventExternalVarInitialization option disabled and then enabled.

1 Open the PLC_PreventExternalVarInitializationExample example:

openExample('plccoder/PreventExternalVarInitializationExample')

.
2 Copy all the model files to a folder of your choice.
3 Open the External_Var_Distributed_Codegen model.
4 Open the Simulink PLC Coder app, and select the Subsystem block.
5 Click Settings. Navigate to PLC Code Generation > Interface. Clear the Remove

initialization statements for externally defined state variables check box.
6 Click OK.
7 Click Generate PLC Code.
8 Select the Subsystem block.
9 Click Settings. Navigate to PLC Code Generation > Interface. Set the Remove initialization

statements for externally defined state variables check box.
10 Click Generate PLC Code.

This image shows a comparison between the code generated with
PLC_PreventExternalVarInitialization disabled, and then enabled. Removing initialization
statements for externally defined variables prevents the corruption of their data values.

 Generated Code Structure for PLC_PreventExternalVarInitialization

24-5

See Also
“Remove Initialization Statements for Externally Defined State Variables” on page 13-36

More About
• “Distributed Model Code Generation Options” on page 24-2

24 Distributed Code Generation with Simulink PLC Coder

24-6

PLC_RemoveSSStep for Distributed Code Generation
Generate structured text code for different components of your model.

Open model

Open the model by using the following command:

open_system('mSystemIntegration');

 PLC_RemoveSSStep for Distributed Code Generation

24-7

24 Distributed Code Generation with Simulink PLC Coder

24-8

Configure Model Components for Distributed Code Generation

To autogenerate structured text code with the same ssMethod type for every component of your
model for external code integration later on, use Keep Top-Level ssMethod Name the Same as the
Non-Top Level Name. For more information, see “Keep Top-Level ssmethod Name the Same as the
Non-Top Level Name” on page 13-35 function.

Mark Externally Defined Variables

1 Open the Simulink PLC Coder app. For more information, see Simulink PLC Coder.
2 Select the TopSystem block.
3 Click Settings. Navigate to PLC Code Generation > Identifiers. In the Identifier Names

box enter Subsystem1,Subsystem2,Subsystem3.
4 Click OK.

Code Generation

1 Open the Simulink PLC Coder app. For more information, see Simulink PLC Coder.
2 Select the Subsystem1 block.
3 Click Settings. Navigate to PLC Code Generation > Identifiers. Select the Keep top level

ssMethod name same as non-top level check box.
4 Click OK.
5 Repeat steps 2 through 4 for SubSystem2, SubSystem3, and TopSystem.

Generate Code for the Subsystem

To generate code for the individual subsystem use the plcgenerate code function:

plcgeneratecode('mSystemIntegration/TopSystem/SubSystem1');

plcgeneratecode('mSystemIntegration/TopSystem/SubSystem2');

plcgeneratecode('mSystemIntegration/TopSystem/SubSystem3');

Generate Code for the Integrated Model

To generate code for the integrated model:

plcgeneratecode('mSystemIntegration/TopSystem');

 PLC_RemoveSSStep for Distributed Code Generation

24-9

Structured Text Code Generation for Subsystem Reference
Blocks

This example shows how to autogenerate structured text code for subsystem reference blocks.

Open Simulink Model

To open the Simulink test bench model, use the following command.

open_system('mSubSysRefSystemIntegration')

24 Distributed Code Generation with Simulink PLC Coder

24-10

Generate Code for the Subsystem

To generate code for the subsystem use plcgeneratecode

generatedfiles = plcgeneratecode('mSubSysRefSystemIntegration/TopSystem');

Generating PLC code for 'mSubSysRefSystemIntegration/TopSystem'.
Using model settings from 'mSubSysRefSystemIntegration' for PLC code generation parameters.
Begin code generation for IDE codesys23.
Emit PLC code to file.
Creating PLC code generation report mSubSysRefSystemIntegration_codegen_rpt.html.
PLC code generation successful for 'mSubSysRefSystemIntegration/TopSystem'.
Generated files:
plcsrc\mSubSysRefSystemIntegration.exp

See Also

More About
• “Subsystem Reference”
• “Distributed Code Generation Limitations” on page 24-12

 Structured Text Code Generation for Subsystem Reference Blocks

24-11

Distributed Code Generation Limitations
The Simulink PLC Coder software does not support:

• Code generation inside subsystem reference blocks.
• Code generation for nested subsystem reference blocks.

See Also

24 Distributed Code Generation with Simulink PLC Coder

24-12

Examples Book

• “Generate Structured Text Code for a Simple Simulink® Subsystem” on page 25-3
• “Generating Structured Text for a Simple Simulink® Subsystem without Internal State”

on page 25-8
• “Generating Structured Text for a Hierarchical Simulink® Subsystem with Virtual Subsystems”

on page 25-9
• “Generating Structured Text for a Hierarchical Simulink® Subsystem” on page 25-11
• “Generating Structured Text for a Reusable Simulink® Subsystem” on page 25-13
• “Generating Structured Text for a Simple Simulink® Subsystem Using Multirate” on page 25-15
• “Simulate and Generate Structured Text Code for a Stateflow® Chart” on page 25-17
• “Generating Structured Text for a MATLAB® Block” on page 25-20
• “Generating Structured Text for a Feedforward PID Controller” on page 25-21
• “Mapping Tunable Parameters to Structured Text” on page 25-23
• “Simulation and Code Generation For Tunable Parameters” on page 25-25
• “Simulate and Generate Code for Speed Cruise Control System” on page 25-29
• “Variable Step Speed Cruise Control System” on page 25-31
• “Simulate and Generate Code for Airport Conveyor Belt Control System” on page 25-33
• “Generating Structured Text for Simulink® Model with Fixed-Point Data Types” on page 25-34
• “Generating Structured Text for Stateflow® Chart with Absolute Time Temporal Logic”

on page 25-36
• “Integrating User Defined Function Blocks, Data Types, and Global Variables into Generated

Structured Text” on page 25-38
• “Simulating and Generating Structured Text Code for Rockwell Motion Instructions”

on page 25-40
• “Tank Control Simulation and Code Generation by Using Ladder Logic” on page 25-42
• “Using Timers in Ladder Logic” on page 25-45
• “Temperature Control Simulation and Code Generation Using Ladder Logic” on page 25-48
• “Elevator Control Simulation and Code Generation Using Ladder Logic” on page 25-52
• “Structured Text Code Generation for Simulink Data Dictionary” on page 25-55
• “Structured Text Code Generation for Subsystem Reference Blocks” on page 25-56
• “PLC_RemoveSSStep for Distributed Code Generation” on page 25-58
• “Structured Text Code Generation for Enum To Integer Conversion” on page 25-61
• “Structured Text Code Generation for Integer To Enum Conversion” on page 25-62
• “PLC_PreventExternalVarInitialization for Distributed Code Generation” on page 25-63
• “Simulation and Structured Text Generation For MPC Controller Block” on page 25-65
• “View Requirement Links from Generated Code” on page 25-70
• “Run-Time Data Collection by Using External Mode Logging” on page 25-73

25

• “Verify Generated Code by Using Cosimulation” on page 25-77

25 Examples Book

25-2

Generate Structured Text Code for a Simple Simulink®
Subsystem

This example shows how to select the target IDE for a Simulink® model, generate code, and view
generated files.

1. Open model plcdemo_simple_subsystem and save a copy to a writable location.

2. Open the Simulink PLC Coder app.

3. Open the PLC Code Generation dialog box.. In the Target IDE select 3S CoDeSys 2.3.

 Generate Structured Text Code for a Simple Simulink® Subsystem

25-3

Click OK

4. Select the SimpleSubsystem block and click Generate PLC Code. Alternatively, from the
command line, enter:

generatedfiles = plcgeneratecode('plcdemo_simple_subsystem/SimpleSubsystem');

25 Examples Book

25-4

5. View the code generation report.

The report includes links to the generated code file plcdemo_simple_subsystem.exp and
associated traceability and code metrics reports.

 Generate Structured Text Code for a Simple Simulink® Subsystem

25-5

6. This figure contains the generatecode plcdemo_simple_subsystem.exp.

25 Examples Book

25-6

Related Topics

• “Generate and Examine Structured Text Code” on page 1-9

 Generate Structured Text Code for a Simple Simulink® Subsystem

25-7

Generating Structured Text for a Simple Simulink® Subsystem
without Internal State

This model shows the code generated for a simple subsystem without internal state.

This model shows how a subsystem without internal state maps to Structured Text.

You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem

Alternatively, you can use the following command generatedFiles =
plcgeneratecode('plcdemo_simple_subsystem_nostate/SimpleSubsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

25 Examples Book

25-8

Generating Structured Text for a Hierarchical Simulink®
Subsystem with Virtual Subsystems

This introductory model shows the code generated for a hierarchical subsystem consisting of other
Simulink subsystems.

This model contains a hierarchical subsystem containing other virtual subsystems.

 Generating Structured Text for a Hierarchical Simulink® Subsystem with Virtual Subsystems

25-9

You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem Alternatively, you can use the following
command generatedFiles = plcgeneratecode('plcdemo_hierarchical_virtual_subsystem/
HierarchicalSubsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

25 Examples Book

25-10

Generating Structured Text for a Hierarchical Simulink®
Subsystem

This introductory model shows the code generated for a hierarchical subsystem consisting of other
Simulink subsystems.

This model contains a hierarchical subsystem containing other subsystems.

 Generating Structured Text for a Hierarchical Simulink® Subsystem

25-11

You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem Alternatively, you can use the following
command generatedFiles = plcgeneratecode('plcdemo_hierarchical_subsystem/
HierarchicalSubsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

25 Examples Book

25-12

Generating Structured Text for a Reusable Simulink®
Subsystem

This model shows the code generated for a reusable subsystem consisting of a few basic Simulink
blocks.

This model contains a subsystem with two copies of an identical subsystem.

 Generating Structured Text for a Reusable Simulink® Subsystem

25-13

You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem

Alternatively, you can use the following command generatedFiles =
plcgeneratecode('plcdemo_reusable_subsystem/ReusableSubsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

25 Examples Book

25-14

Generating Structured Text for a Simple Simulink® Subsystem
Using Multirate

This model shows the code generated for a simple subsystem using multirate.

This model shows how a subsystem using multirate maps to Structured Text.

 Generating Structured Text for a Simple Simulink® Subsystem Using Multirate

25-15

You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem

Alternatively, you can use the following command generatedFiles =
plcgeneratecode('plcdemo_multirate/SimpleSubsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

25 Examples Book

25-16

Simulate and Generate Structured Text Code for a Stateflow®
Chart

This example shows how to simulate and generate code for the ControlModule stateflow chart from
the plcdemo_stateflow_controller model.

Open the Model
open_system('plcdemo_stateflow_controller')

To start the simulation, click Run.

Generate Code

To generate code for the ControlModule chart, use plcgeneratecode. For more information, see
plcgeneratecode:

 Simulate and Generate Structured Text Code for a Stateflow® Chart

25-17

generatedfiles = plcgeneratecode('plcdemo_stateflow_controller/ControlModule');

The plcdemo_stateflow_controller consists of stateflow charts to simulate a drive module. The
TestHarness chart provides a test scenatio of starting, holding, and resetting the drive.

open_system('plcdemo_stateflow_controller/TestHarness');

The BehaviorModel chart provides a simple chart to test the ControlModule chart behavior by
injecting faults.

open_system('plcdemo_stateflow_controller/BehaviorModel');

25 Examples Book

25-18

The ControlModule chart performs the drive control logic.

open_system('plcdemo_stateflow_controller/ControlModule');

 Simulate and Generate Structured Text Code for a Stateflow® Chart

25-19

Generating Structured Text for a MATLAB® Block
This model shows the code generated for a MATLAB block implementing tank valve control logic.

TankControl is a MATLAB block.

You can generate PLC Structured Text code for this block by right-clicking on the subsystem block
and select PLC Code -> Generate Code for Subsystem Alternatively, you can use the following
command generatedFiles = plcgeneratecode('plcdemo_eml_tankcontrol/TankControl');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

25 Examples Book

25-20

Generating Structured Text for a Feedforward PID Controller
This model shows the code generated for a Feedforward PID Controller implemented using Simulink
library blocks.

mdl = 'plcdemo_pid_feedforward';
open_system(mdl);

This model contains the following subsystem which implements the Feedforward controller.

open_system('plcdemo_pid_feedforward/pid_feedforward');

You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem Alternatively, you can use the following
command

 Generating Structured Text for a Feedforward PID Controller

25-21

generatedFiles = plcgeneratecode('plcdemo_pid_feedforward/pid_feedforward');

Generating PLC code for 'plcdemo_pid_feedforward/pid_feedforward'.
Using model settings from 'plcdemo_pid_feedforward' for PLC code generation parameters.
Gathering test vectors for PLC testbench.
Begin code generation for IDE codesys23.
Emit PLC code to file.
Creating PLC code generation report plcdemo_pid_feedforward_codegen_rpt.html.
PLC code generation successful for 'plcdemo_pid_feedforward/pid_feedforward'.
Generated files:
.\plcsrc\plcdemo_pid_feedforward.exp

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

25 Examples Book

25-22

Mapping Tunable Parameters to Structured Text
This model shows how to map tunable parameters from the Simulink® model to the generated
Structured Text code.

This model shows the different implementations of tunable parameters in the generated code. It
makes use of three parameters K1, K2, and K3 defined in the MATLAB base workspace. To build the
subsystem, right-click on the subsystem block and select PLC Code Generation > Generate Code for
Subsystem. The Diagnostic Viewer with hyperlinks to the generated code is displayed automatically.

In this model:

• K1 is set to "Auto" storage class
• K2 is set to "ExportedGlobal" storage class
• K3 is set to "ExportedGlobal" constant storage class

In the generated Structured Text code for compatible IDE targets:

• K1 is mapped to a Function Block local variable
• K2 is mapped to a global variable
• K3 is mapped to a global constant

For the RSLogix 5000 Add On Instruction (AOI) format:

 Mapping Tunable Parameters to Structured Text

25-23

• K1 is mapped to an AOI local tag
• K2 and K3 are mapped to AOI input tags

For the RSLogix 5000 Routine format:

• K1 is mapped to routine instance tag
• K2 and K3 are mapped to global program tags

See the Simulink PLC Coder documentation on tunable parameter code generation for more
information.

You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem Alternatively, you can use the following
command generatedFiles = plcgeneratecode('plcdemo_tunable_params/SimpleSubsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

25 Examples Book

25-24

Simulation and Code Generation For Tunable Parameters
Mapping Tunable Parameters Defined Using Simulink.Parameter Objects to Structured Text

This model shows how tunable parameters map to Structured Text by specifying them as
Simulink.Parameter objects in MATLAB base workspace.

 Simulation and Code Generation For Tunable Parameters

25-25

25 Examples Book

25-26

This model uses three parameters K1, K2 and K3 defined in the MATLAB base workspace as
Simulink.Parameter object. These parameters are used in the Gain blocks:

In this model:

• K1 has 'SimulinkGlobal' storage class
• K2 has 'ExportedGlobal' storage class
• K3 has 'ExportedGlobal' storage class and 'Const' custom storage class

The parameters and their storage classes have been defined using the following MATLAB script
(setup_tunable_params.m) which is run at model load time:

% define tunable parameters in base workspace as Simulink.Parameter objects

% tunable parameter mapped to local variable
K1 = Simulink.Parameter;
K1.Value = 0.1;
K1.StorageClass = 'SimulinkGlobal';

% tunable parameter mapped to global variable
K2 = Simulink.Parameter;
K2.Value = 0.2;
K2.StorageClass = 'ExportedGlobal';
K2.CoderInfo.CustomStorageClass = 'Default';

% tunable parameter mapped to global constant
K3 = Simulink.Parameter;

 Simulation and Code Generation For Tunable Parameters

25-27

K3.Value = 0.3;
K3.CoderInfo.StorageClass = 'Custom';
K3.CoderInfo.CustomStorageClass = 'Const';

Now you can generate PLC Structured Text code for this subsystem by right-clicking on the
subsystem block and select PLC Code -> Generate Code for Subsystem

Alternatively, you can use the following command generatedFiles =
plcgeneratecode('plcdemo_tunable_params_slparamobj/SimpleSubsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

In the generated Structured Text code for compatible IDE targets:

• K1 is mapped to a Function Block local variable
• K2 is mapped to a global variable
• K3 is mapped to a global constant

For the RSLogix 5000 Add On Instruction (AOI) format:

• K1 is mapped to an AOI local tag
• K2 and K3 are mapped to AOI input tags

For the RSLogix 5000 Routine format:

• K1 is mapped to routine instance tag
• K2 and K3 are mapped to global program tags

See the Simulink PLC Coder documentation on tunable parameter code generation for more
information.

25 Examples Book

25-28

Simulate and Generate Code for Speed Cruise Control System
This example shows how to simulate and generate code for the Controller subsystem from a speed
cruise control model by using Simulink® and Stateflow®.

Open the Model

open_system('plcdemo_cruise_control')

To start the simulation, click Run.

Generate Code

To generate code for the Controller subsystem, use plcgeneratecode:

generatedfiles = plcgeneratecode('plcdemo_cruise_control/Controller');

 Simulate and Generate Code for Speed Cruise Control System

25-29

The Controller subsystem performs the Enable and Setpoint calculations by using a Triggered
Stateflow® chart. The Throttle Command is computed by using a discrete PID controller.

25 Examples Book

25-30

Variable Step Speed Cruise Control System
This example shows how to simulate and generate code for the Controller subsystem from a speed
cruise control model by using variable continuous step solver.

Open the Model

open_system('plcdemo_cruise_control_continuous');

To start the simulation, click Run

 Variable Step Speed Cruise Control System

25-31

Generate Code

To generate code for the Controller subsystem, use plcgeneratecode:

generatedfiles =
plcgeneratecode('plcdemo_cruise_control_continuous/Controller');

In this model, the model solver is set to variable-step continuous (ode45); the sample time of the
controller subsystem is set to 0.05. To set the controller sample time, right click on the controller
block and select Subsystem Parameters, on the Main tab, set the Sample time parameter. This
method allows combined modeling of discrete-time controller and continuous-time plant in the same
model with PLC code generation support.

25 Examples Book

25-32

Simulate and Generate Code for Airport Conveyor Belt Control
System

This example shows how to simulate and generate code for the Controller subsystem from an airport
conveyor belt model.

Open the Model

open_system('plcdemo_airport_conveyor')

To start the simulation, click Run. Observe the conveyor belt animation.

Generate Code

To generate code for the Controller subsystem, use plcgeneratecode:

generatedfiles = plcgeneratecode('plcdemo_airport_conveyor/Controller')

 Simulate and Generate Code for Airport Conveyor Belt Control System

25-33

Generating Structured Text for Simulink® Model with Fixed-
Point Data Types

Open the subsystem at the top level named 'Subsystem'. Simulate the model and observe the fixed
point types displayed on the signals.

25 Examples Book

25-34

You can generate PLC Structured Text code for this subsystem by right-clicking on the subsystem
block and select PLC Code -> Generate Code for Subsystem Alternatively, you can use the following
command generatedFiles = plcgeneratecode('plcdemo_fixed_point/Subsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links. You will notice that all
the fixed-point input/outputs in the model as well as internal state variables have been lowered to
integer data types.

 Generating Structured Text for Simulink® Model with Fixed-Point Data Types

25-35

Generating Structured Text for Stateflow® Chart with Absolute
Time Temporal Logic

This model shows the code generated for a Stateflow chart which uses absolute time temporal logic.
Simulate the model. Click on the scope to observe the "pulse" output.

Open up the "Temporal" Stateflow chart. Notice that this chart uses absolute time temporal logic
operators like 'after' and 'before'. These operators are mapped to Structured Text timer operations in
the generated code.

25 Examples Book

25-36

You can generate PLC Structured Text code for this chart by right-clicking on the chart and select
PLC Code -> Generate Code for Subsystem

Alternatively, you can use the following command generatedFiles =
plcgeneratecode('plcdemo_sf_abs_time/Temporal');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

 Generating Structured Text for Stateflow® Chart with Absolute Time Temporal Logic

25-37

Integrating User Defined Function Blocks, Data Types, and
Global Variables into Generated Structured Text

This model shows how to integrate user defined function blocks, data types and global variables into
generated structured text

Open the top level subsystem 'Subsystem' by double clicking on it. You will notice it has a bunch of
blocks including the block 'ExternallyDefinedBlock'. The user would like to replace this with an
externally defined block in the PLC IDE in the generated code. In this model 'ExternallyDefinedBlock'
is a MATLAB® block. This could be any other Simulink® block or subsystem as well. The input port
'In1' is a bus input of 'InBus' data type. The user would like to provide the definition of 'InBus'
externally in the PLC IDE. Similarly, the user would like to provide the definition of the 'K1' global
tunable parameter of the Gain block externally.

25 Examples Book

25-38

To do this, right click on the top level subsystem 'Subsystem' and select 'PLC Code -> Options ...' to
bring up the 'Configuration Parameters' dialog box. In the dialog box, select 'Symbols' pane under
'PLC Code Generation'. You will see the following symbols in the 'Externally Defined Symbols' field:

 ExternallyDefinedBlock InBus K1

Specifying these symbols here would respectively omit the function block, bus data type and global
variable with the same names in the generated structured text.

Now you can generate PLC Structured Text code for this subsystem by right-clicking on the
subsystem block and select PLC Code -> Generate Code for Subsystem Alternatively, you can use the
following command generatedFiles = plcgeneratecode('plcdemo_external_symbols/Subsystem');

After the code generation, the Diagnostic Viewer window is displayed with hyperlinks to the
generated code files. You can open the generated files by clicking on the links.

In the generated code, you will notice that there are calls to function block 'ExternallyDefinedBlock',
however the definition of the function block has been omitted. Similarly, the definition of bus type
'InBus1' and global variable 'K1' have also been omitted.

 Integrating User Defined Function Blocks, Data Types, and Global Variables into Generated Structured Text

25-39

Simulating and Generating Structured Text Code for Rockwell
Motion Instructions

This model shows how to model Rockwell motion api calls in Stateflow. This representation can then
be further used for code generation using the "plcgeneratemotionapicode" function. For more
information on this workflow, refer to the "Simulation and Code Generation of Motion Instructions"
topic in the Simulink® PLC Coder™ documentation.

Create a Folder and Copy Relevant Files

The following code will create a folder in your current working folder. The new folder will contain
only the files that are relevant for this example. If you do not want to affect the current folder (or if
you cannot generate files in this folder), change your working folder.

plccoderdemo_setup('plcdemo_motion_api_rockwell');

Open up the "MotionController" subsystem. Open the Stateflow® chart named "Chart" chart inside it.
This chart implements the control logic for controlling the drives or the axes.

load_system('MotionControllerExample');
open_system('MotionControllerExample/MotionController/Chart');

25 Examples Book

25-40

You can generate PLC Structured Text code for this subsystem by using the script file
"plcgeneratemotionapicode"

warning('OFF', 'plccoder:plccg_ext:AutomaticeTypeConversions');
plcgeneratemotionapicode('MotionControllerExample/MotionController');
warning('ON', 'plccoder:plccg_ext:AutomaticeTypeConversions');

 Created temporary model for codegeneration :MotionController0
 PLC code generation successful for 'MotionController0/MotionController'.

 Generated files:
 plcsrc/MotionController0.L5X

Clean Up

Run the following commands to close the model, remove files, and return to the original folder.

>> close_system('MotionControllerExample');

>> cleanup

 Simulating and Generating Structured Text Code for Rockwell Motion Instructions

25-41

Tank Control Simulation and Code Generation by Using Ladder
Logic

This example shows how to simulate ladder logic and generate code from the ladder tank controller
model.

Import, Simulate,and Generate Code

1. Create a folder with write permission and copy the files
plcdemo_ladder_tankcontrol_template.slx and TankControl.L5X into that folder.

2. Change the current folder to the newly created folder and rename
plcdemo_ladder_tankcontrol_template.slx to plcdemo_ladder_tankcontrol.slx.

3. In MATLAB, run the plcimportladder command. for more information, see plcimportladder
command:

plcimportladder('TankControl','TopAOI','TankControl');

4. Open the generated model TankControl_runner_TankControl.slx and select and copy the
TankControl_runner block. Open plcdemo_ladder_tankcontrol, and replace Controller/
TankControl_runner with the copied block.

5. To start the simulation, click Run. Open the Tank HMI block and use the Control Command rotary
switch to set controller command input.

Set the Control Command Input

• Set the Control Command switch to the 'Fill' position to fill the tank.
• Set the Control Command switch to the 'Hold' position to hold the current tank state.
• Set the Control Command switch to the 'Empty' position to empty the tank.
• Set the Control Command switch to the 'Stir' position to activate the tank stir state.

The tank enters the Stir state only when the fluid level is full. Otherwise the Stir command has no
effect. If the tank is in the Stir state, the Stir indicator lamp is on. Otherwise, it is off. The numeric
value of the tank command is:

• Fill -- 0
• Hold -- 1
• Empty -- 2
• Stir --3

The tank animation UI shows the tank status as the simulation runs.

The completed simulink model should resemble

open_system('plcdemo_ladder_tankcontrol_complete');

25 Examples Book

25-42

6. To generate code for the subsystem, use plcgeneratecode. for more information, see
plcgeneratecode:

generatedfiles = plcgeneratecode('plcdemo_ladder_tankcontrol/Controller')

7. To generate a testbench, open the ladder tank control testbench model:

open_system('plcdemo_ladder_tankcontrol_tb');

 Tank Control Simulation and Code Generation by Using Ladder Logic

25-43

25 Examples Book

25-44

Using Timers in Ladder Logic
This example shows how to model and simulate a motor controller in Simulink® by using Ladder
Logic. The example uses the ladder Timer instruction to implement the logic for delayed switching of
a motor. The timer T1 is used to control the starting delay and the timer T2 is used to control the
stopping delay.

Inputs and Outputs

The Motor Controller has two inputs, Start and Stop. Changing the Start input value to 1 will
start the motor after 5 seconds. Changing the Stop input value to 1 will stop the motor after 2
seconds. Stop input will override the Start input.

The output signal named Motor will be 1 when the motor is ON and 0 when the motor id OFF.

Motor Controller

The Motor Controller block is a PLC Controller block. It contains a Ladder Program block which
houses the ladder logic. Open the Motor Controller block and then open the Ladder Diagram
Program block to view the ladder logic for the controller.

 Using Timers in Ladder Logic

25-45

This ladder logic has a TON timer named as T1 which is responsible for the delay during starting the
motor, and a TOF timer named as T2 which is responsible for the delay during the stopping of the
motor.

When the Start input is toggled to 1, the MotorStart output in the first rung gets activated which
starts the timer T1 counting operation. T1.DN bit is set when the T1 finishes counting. This causes
the third rung with timer T2 to become activated. Since T2 is a TOF timer, the T2.DN bit is set but,
timer starts counting operation only when this rung becomes false. Hence, both the inputs to the
lowermost rung are true and the Motor output gets activated.

25 Examples Book

25-46

When the Stop input is toggled to 1, the MotorStart coil gets deactivated and hence the T1.DN bit
is reset and the timer T2 starts counting. Once the T2 finishes counting operation, the T2.DN bit gets
reset and the Motor output gets deactivated.

Timer Configuration

The timer configurations are specified in the InitFcn callback inside the Model Properties. To
modify the start and stop delays, open the InitFcn callback from the Model Properties dialog
from Modeling > Model Settings > Model Properties.

T1_InitialValue.PRE specifies the Preset value of timer T1 and the T2_InitialValue.PRE
specifies the Preset value of timer T2. Both these values are specified as milliseconds.

Human Machine Interface (HMI)

Double click the HMI Subsystem if it is not already open to bring up the Human Machine Interface
(HMI) for this example. This HMI has the following sections:

• Inputs: The Start and Stop toggle switches are used to change the value of the respective
inputs. When the toggle switch is in On position the value of the corresponding input will be 1.

• Motor: This indicates the status of the motor. Green colored Motor ON indicator means that the
motor is running whereas grey colored indicator means that the motor is stopped.

• Graphs: This section of the HMI Subsystem displays the status of Start, Stop and Motor
against time as the simulation progresses.

 Using Timers in Ladder Logic

25-47

Temperature Control Simulation and Code Generation Using
Ladder Logic

This example shows how to model a temperature controller in Simulink® by using ladder logic. The
example also showcases test case generation using Simulink Design Verifier™, C and ladder code
generation, and ladder testbench generation.

The plcdemo_ladder_househeat_data.m file initializes data in the model workspace. To make changes,
you can edit the model workspace directly or edit the file and re-load the model workspace. To view
the model workspace, select MODELING > Model Explorer from the Simulink editor.

Step 1: Opening the Model

Open the plcdemo_ladder_househeat by using:

>> plcdemo_ladder_househeat_complete

Step 2: Model Initialization

When the model is opened, it loads the information about the house from the
plcdemo_ladder_househeat_data.m file. The file does the following:

• Defines the house geometry (size, number of windows)
• Specifies the thermal properties of house materials
• Calculates the thermal resistance of the house
• Provides the heater characteristics (temperature of the hot air, ... flow-rate)
• Defines the cost of electricity (0.09$/kWhr)
• Specifies the initial room temperature (20 deg. Celsius = 68 deg. ... Fahrenheit)

Note: Time is given in units of hours. Certain quantities, like air flow-rate, are expressed per hour
(not per second).

25 Examples Book

25-48

Step 3: Understanding Model Components

Set Point

Set Point is a constant block. It specifies the temperature that must be maintained indoors. It is 70
degrees Fahrenheit by default. Temperatures are given in Fahrenheit, but then are converted to
Celsius to perform the calculations.

Range

Range is a constant block. This specifies the range around the Set Point for the room temperature to
fluctuate. It is 5 degrees Fahrenheit by default. Hence, the room temperature will fluctuate between

 and where

Temperature Controller

Temperature Controller is a subsystem that has a AOI Runner container. Inside this temperature
controller AOI Runner is a Ladder Diagram Function Block. Double click this block and select Logic
routine to view the ladder logic for the temperature controller.

House

House is a subsystem which models the outside environment, house and the heater dynamics. Refer
to the Thermal Model of House example for more information on these.

Ladder Logic

 Temperature Control Simulation and Code Generation Using Ladder Logic

25-49

Open the Temperature Controller > Ladder Diagram Function Block > Logic Routine
to view the ladder diagram for the temperature controller

The first rung calculates the and values based on the Set Point and Range inputs.
The GEQ activates the TEMP_H coil if the Room Temperature is greater than or equal to the SET_H.
Similarly, The LEQ activates the TEMPL_L coil if the Room Temperature is less than or equal to the
SET_L value.

The lowermost rung turns the heater ON if the TEMP_L output is active and turns the hearer OFF if
the TEMP_H output is active.

Step 4: Run the Simulation

Click Run button to start simulation. Open HMI and use the following controls:

• Temperature Controller Settings: Allows changing the Set Point and Range input values.
• Ambient Temperature: Allows changing the average outside temperature and the range of its

variation.
• Room Temperature: Displays the heater status, and the inside and outside temperature graphs.

Step 5: Generate Simulink Design Verifier Test Cases

Preprocess the Simulink model for SLDV Test Case generation by executing the following command
in the MATLAB Command Window:

25 Examples Book

25-50

>> plcladderoption (gcs, 'SLDV', 'on')

Open the Temperature Controller Subsystem and right click on the AOI Runner Block named
Temperature Controller. Select Design Verifier > Generate test case for
subsystem.

Step 6: Generate C code

Ensure that an ert.tlc is selected in the Code Generation tab of the Model Configuration
Parameters. Preprocess the simulink model for C/C++ code generation by executing the following
command in the MATLAB Command Window:

>> plcladderoption(gcs, 'FastSim', 'on');

Open the Temperature Controller Subsystem and right click on the AOI Runner Block named
Temperature Controller. Select C/C++ Code > Build This Subsystem.

Step 7: Ladder code and testbench generation

Open ladder tank control testbench model:

>> plcdemo_ladder_househeat_tb

Select the Temperature Controller/ Temperature Controller Runner block and right-click
PLC Coder->Generate Code for Subsystem to generate ladder code.

To generate testbench, select the Generate testbench for subsystem option in the PLC
Configuration Parameters Dialog and generate code.

 Temperature Control Simulation and Code Generation Using Ladder Logic

25-51

Elevator Control Simulation and Code Generation Using Ladder
Logic

This example shows how to model a controller for a single-car elevator in Simulink® by using ladder
logic. The elevator system is modeled as a MATLAB Function Block. The example also showcases
ladder code generation.

Step 1: Opening the Model

Open the plcdemo_ladder_elevator by using:

>> plcdemo_ladder_elevator

Step 2: Model Initialization

When the model is opened, it sets the initial values of different parameters used in elevator controller
from the plcdemo_ladder_elevator_init.m file.

25 Examples Book

25-52

Step 3: Model Components

Floor Requests

Floor Requests are a group of constant blocks. It specifies the indoor and outdoor floor requests to
the controller. By default all the constant blocks are set to zero.

Elevator Control System

Elevator Control System is a subsystem which consists of Digital Input modules(DI), Digital
Output modules(DO) and a PLC Controller. DI modules preprocess floor request input and other
sensor inputs. Similarly, DO modules preprocess output of PLC controller and sets output contactors.
PLC controller is the brain of the system. It performs all the calculations and control action.

Elevator

 Elevator Control Simulation and Code Generation Using Ladder Logic

25-53

Elevator is a MATLAB function block which show cases mathematical model of a single car elevator
system.

Step 4: Run the Simulation

Click Run button to start simulation. Open HMI and use the following controls:

• Exterior Buttons: Represents the exterior floor request buttons.
• Interior Buttons: Represents the interior floor request buttons.
• Photocell: Represents the door sensor.

Step 5: Ladder code generation

Open elevator control model:

>> plcdemo_ladder_elevator

Select the plcdemo_ladder_elevator/Elevator Control System/Elevator PLC Ladder
Diagram System/Elevator Controller block and right-click PLC Coder->Generate Code for
Subsystem to generate ladder code.

25 Examples Book

25-54

Structured Text Code Generation for Simulink Data Dictionary
This example shows how to autogenerate structured text code for a model with a Simulink Data
Dictionary Component

Prerequisites

Copy plc_sldd_ex.slx and plc_sldd_ex.sldd to the same folder in your current working directory
(CWD)

Open the model

open_system('plc_sldd_ex')

 Structured Text Code Generation for Simulink Data Dictionary

25-55

Structured Text Code Generation for Subsystem Reference
Blocks

This example shows how to autogenerate structured text code for subsystem reference blocks.

Open Simulink Model

To open the Simulink test bench model, use the following command.

open_system('mSubSysRefSystemIntegration')

25 Examples Book

25-56

Generate Code for the Subsystem

To generate code for the subsystem use plcgeneratecode

generatedfiles = plcgeneratecode('mSubSysRefSystemIntegration/TopSystem');

Generating PLC code for 'mSubSysRefSystemIntegration/TopSystem'.
Using model settings from 'mSubSysRefSystemIntegration' for PLC code generation parameters.
Begin code generation for IDE codesys23.
Emit PLC code to file.
Creating PLC code generation report mSubSysRefSystemIntegration_codegen_rpt.html.
PLC code generation successful for 'mSubSysRefSystemIntegration/TopSystem'.
Generated files:
plcsrc\mSubSysRefSystemIntegration.exp

 Structured Text Code Generation for Subsystem Reference Blocks

25-57

PLC_RemoveSSStep for Distributed Code Generation
Generate structured text code for different components of your model.

Open model

Open the model by using the following command:

open_system('mSystemIntegration');

25 Examples Book

25-58

 PLC_RemoveSSStep for Distributed Code Generation

25-59

Configure Model Components for Distributed Code Generation

To autogenerate structured text code with the same ssMethod type for every component of your
model for external code integration later on, use Keep Top-Level ssMethod Name the Same as the
Non-Top Level Name. For more information, see “Keep Top-Level ssmethod Name the Same as the
Non-Top Level Name” on page 13-35 function.

Mark Externally Defined Variables

1 Open the Simulink PLC Coder app. For more information, see Simulink PLC Coder.
2 Select the TopSystem block.
3 Click Settings. Navigate to PLC Code Generation > Identifiers. In the Identifier Names

box enter Subsystem1,Subsystem2,Subsystem3.
4 Click OK.

Code Generation

1 Open the Simulink PLC Coder app. For more information, see Simulink PLC Coder.
2 Select the Subsystem1 block.
3 Click Settings. Navigate to PLC Code Generation > Identifiers. Select the Keep top level

ssMethod name same as non-top level check box.
4 Click OK.
5 Repeat steps 2 through 4 for SubSystem2, SubSystem3, and TopSystem.

Generate Code for the Subsystem

To generate code for the individual subsystem use the plcgenerate code function:

plcgeneratecode('mSystemIntegration/TopSystem/SubSystem1');

plcgeneratecode('mSystemIntegration/TopSystem/SubSystem2');

plcgeneratecode('mSystemIntegration/TopSystem/SubSystem3');

Generate Code for the Integrated Model

To generate code for the integrated model:

plcgeneratecode('mSystemIntegration/TopSystem');

See Also

More About
• “Generated Code Structure for PLC_RemoveSSStep” on page 24-3
• “Distributed Model Code Generation Options” on page 24-2

25 Examples Book

25-60

Structured Text Code Generation for Enum To Integer
Conversion

Autogenerate structured text code for enum to integer conversion model.

Load enum class

For this example, the myEnum.m script loads the enum class definition. Place this script file in the
same project folder as the plc_enum_to_int model file.

Open the model

open_system('plc_enum_to_int.slx')

 Structured Text Code Generation for Enum To Integer Conversion

25-61

Structured Text Code Generation for Integer To Enum
Conversion

This example shows how to autogenerate structured text code for integer to enum conversion model.

Load enum class

For this example, the myColor.m script loads the enum class definition. Place this script file in the
same project folder as the plc_int_to_enum model file.

Open the model

open_system('plc_int_to_enum.slx')

25 Examples Book

25-62

PLC_PreventExternalVarInitialization for Distributed Code
Generation

Generate structured text code for different components of your model.

Open model

Open the model by using the following command:

open_system('External_Var_Distributed_Codegen');

Configure Model Components for Distributed Code Generation

To autogenerate structured text code by preventing initialization statements for externally defined
variables for external code integration later on, use remove Initialization Statements for Externally
Defined State Variables. for more information, see “Remove Initialization Statements for Externally
Defined State Variables” on page 13-36.

Mark Externally Defined Variables

1 Open the Simulink PLC Coder app. For more information, see Simulink PLC Coder.
2 Select the Subsystem block.
3 Click Settings. Navigate to PLC Code Generation > Identifiers. In the Identifier Names

box enter child1,child2,DSExportedGlobal.
4 Click OK.

Code Generation

1 Open the Simulink PLC Coder app. For more information, see Simulink PLC Coder.
2 Select the Subsystem block.
3 Click Settings. Navigate to PLC Code Generation > Interface. Select the Remove

Initialization Statements for externally defined state variables check box.
4 Click OK.

Generate Code for the Subsystem

To generate code for the individual subsystem use the plcgenerate code function:

 PLC_PreventExternalVarInitialization for Distributed Code Generation

25-63

plcgeneratecode('External_Var_Distributed_Codegen/Subsystem');

Related Topics

“Generated Code Structure for PLC_PreventExternalVarInitialization” on page 24-5.

See Also

More About
• “Generated Code Structure for PLC_PreventExternalVarInitialization” on page 24-5
• “Distributed Model Code Generation Options” on page 24-2

25 Examples Book

25-64

Simulation and Structured Text Generation For MPC Controller
Block

This example shows how to simulate and generate Structured Text for an MPC Controller block using
Simulink® PLC Coder™ software. The generated code uses single-precision.

Required Products

To run this example, MPC Toolbox, Simulink and Simulink PLC Coder are required.

if ~mpcchecktoolboxinstalled('simulink')
 disp('Simulink is required to run this example.')
 return
end
if ~mpcchecktoolboxinstalled('plccoder')
 disp('Simulink PLC Coder is required to run this example.');
 return
end
if ~mpcchecktoolboxinstalled('mpc')
 disp('MPC Toolbox is required to run this example.');
 return
end

Define Plant Model and MPC Controller

Define a SISO plant.

plant = ss(tf([3 1],[1 0.6 1]));

Define the MPC controller for the plant.

Ts = 0.1; %Sample time
p = 10; %Prediction horizon
m = 2; %Control horizon
Weights = struct('MV',0,'MVRate',0.01,'OV',1); % Weights
MV = struct('Min',-Inf,'Max',Inf,'RateMin',-100,'RateMax',100); % Input constraints
OV = struct('Min',-2,'Max',2); % Output constraints
mpcobj = mpc(plant,Ts,p,m,Weights,MV,OV);

Simulate and Generate Structured Text

Open the Simulink model.

mdl = 'mpc_plcdemo';
open_system(mdl)

 Simulation and Structured Text Generation For MPC Controller Block

25-65

To generate structured text for the MPC Controller block, complete the following two steps:

• Configure the MPC block to use single-precision data. Set the Output data type property of the
MPC Controller block to single.

open_system([mdl '/Control System/MPC Controller'])

25 Examples Book

25-66

• Put the MPC block inside a subsystem block and treat the subsystem block as an atomic unit.
Select the Treat as atomic unit property of the subsystem block.

Simulate the model in Simulink.

close_system([mdl '/Control System/MPC Controller'])
open_system([mdl '/Outputs//References'])
open_system([mdl '/Inputs'])
sim(mdl)

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

 Simulation and Structured Text Generation For MPC Controller Block

25-67

To generate code with the PLC Coder, use the plcgeneratecode command.

disp('Generating PLC structure text... Please wait until it finishes.')
plcgeneratecode([mdl '/Control System']);

25 Examples Book

25-68

Generating PLC structure text... Please wait until it finishes.
Generating PLC code for 'mpc_plcdemo/Control System'.
Using model settings from 'mpc_plcdemo' for PLC code generation parameters.
Begin code generation for IDE codesys23.
Emit PLC code to file.
Creating PLC code generation report mpc_plcdemo_codegen_rpt.html.
PLC code generation successful for 'mpc_plcdemo/Control System'.
Generated files:
plcsrc\mpc_plcdemo.exp

The Message Viewer dialog box shows that PLC code generation was successful.

Close the Simulink model, and return to the original directory.

bdclose(mdl)

 Simulation and Structured Text Generation For MPC Controller Block

25-69

View Requirement Links from Generated Code
View requirements linked to a model by using the Requirements Manager app and model object
context menu.

Open Model

This model shows how to generate code for an airport conveyer belt controller. Open the Controller
subsystem, then open the Stateflow chart inside it. This chart implements the control logic for
starting and stopping the conveyer belt motor, depending on sensor inputs.

open_system('plcdemo_airport_conveyor_requirements');

View Requirements

You can view requirements linked to the model by using the * Requirements Manager* app and by
using the object context menu on specific model.

25 Examples Book

25-70

• Requirements Manager app

Open the Requirements Manager app. Click a requirement in the Requirements Browser. The
corresponding model element is highlighted.

• Model Object Context Menu

To view the requirement for a model-specific object, right-click an element and select Requirements
> Open Outgoing Links. For example, to view the requirements for the Controller subsystem
block, right-click the Controller block and select Requirements > Open Outgoing Links.

 View Requirement Links from Generated Code

25-71

See Also

• “Link Model Objects” (Simulink Requirements)
• “Requirements Management Interface” (Simulink Requirements)

25 Examples Book

25-72

Run-Time Data Collection by Using External Mode Logging
Generate code by using external mode logging. Download the generated code with the external mode
logging function to the target Programmable Logic Controller (PLC) and collect run-time data.
Visualize and monitor the collected run-time data by using Simulation Data Inspector and an Open
Platform Communications (OPC) server.

Target Integrated Development Environments (IDEs)

• Rockwell Automation® Studio 5000® IDE
• Rockwell Automation® RSLinx® Classic

Open Model

Open the ext_demo1.slx model. The model consists of two children subsystems S1 and S2, a
MATLAB® Function block, and a Stateflow® chart.

uiopen('ext_demo1.slx',1);

The S1 and S2 children subsystems are identical and contain a simple feedback loop.

mdl_1 = 'ext_demo1/Subsystem/S1';
open_system(mdl_1);

The Stateflow® chart is a simple state machine that has four states. The states change the value of
the variable out during every simulation timestamp.

mdl_2 = 'ext_demo1/Subsystem/Chart';
open_system(mdl_2);

 Run-Time Data Collection by Using External Mode Logging

25-73

The MATLAB® Function block produces code to generate a sine wave. The sine wave is the input to
the S1 and S2 subsystems.

mdl_3 = 'ext_demo1/Subsystem/MATLAB Function';
open_system(mdl_3);

External Mode Logging and Code Generation

External mode logging can save system states, outputs, and simulation time at each model execution
step. The data is written to a MAT-file. Collect run-time data for the variables in the MAT-file by
running the generated code, which contains the logging function in a target IDE.

To enable external mode logging and generate code:

1 Open the Simulink® PLC Coder™ app.
2 Select the Subsystem block. In the PLC Code tab, click Settings.
3 On the PLC Code Generation pane, set Target IDE to Rockwell Studio 5000: AOI.

25 Examples Book

25-74

4 On the Interface pane, select Generate Logging Code. Click OK.
5 In the PLC Code tab, click Generate PLC Code.

The software also generates a plc_log_data.mat file during code generation.

Download Code and Configure RSLinx® OPC Server

To download and set up the OPC server:

1 Open the ext_demo1.ACD file by using the Studio 5000® IDE. Compile the file and download it
to your target PLC.

2 Start RSLinx® and select DDE/OPC > Topic Configuration. Click New, and in the dialog box,
enter ext_demo1 as the topic name. On the Data Source tab, select your target PLC. Click Yes.

To verify the OPC server setup, in RSLinx® select Edit > Copy DDE/OPC Link. If
iO_Subsystem_val is present, the server configuration is complete.

 Run-Time Data Collection by Using External Mode Logging

25-75

Stream and Display Run-Time Data

You can stream and display the logging data through Simulation Data Inspector by using Simulink
PLC Coder™ external mode commands. Use plcdispextmodedata to display the contents of the
plc_log_data MAT-file.

cd plcsrc
plcdispextmodedata plc_log_data.mat

Connect to the OPC server and stream logging data by using the plcrunextmode function.

plcrunextmode('localhost','studio5000','ext_demo1','plc_log_data.mat')

You must have the RSLinx® classic version to copy the DDE/OPC link. The RSLinx® Classic Lite
version does not work.

See Also

• plcdispextmodedata
• plcrunextmode

25 Examples Book

25-76

Verify Generated Code by Using Cosimulation
Verify your generated code by using cosimulation. The generated code and testbench run on a
Codesys software-based programable logic controller (soft PLC). The Simulink ™ model uses Open
Platform Communication Unified Architecture (OPC UA) to communicate with and retrieve the
cosimulated data from the soft PLC. The Simulink model verifies the generated code by comparing
the model simulation results to the cosimulated soft PLC results.

Prerequisites

On your system, you must have installed:

• Codesys V3.5.SP16 + IDE or Codesys V3.5 SP16 Patch 1 + IDE
• OPC Toolbox ™
• Simulink PLC Coder ™

Model Description

The simple_cosim model is made up of the SimpleSubsystem block and the MATLAB System
(PLCCOSIM) block. During simulation, the model compares values from the SimpleSubsystem block
to the values from the soft plc which are retrieved by using the MATLAB System (PLCCOSIM) block.

 Verify Generated Code by Using Cosimulation

25-77

The SimpleSubsystem block contains a simple feedback loop.

The MATLAB System block is set up to run the PLCCOSIM.m file. The file contains the code to set up
OPC UA communications and retrieve the cosimulated data from the soft PLC.

type PLCCOSIM.m

classdef PLCCOSIM < matlab.System
 % PLCCOSIM Add summary here
 %
 % This template includes the minimum set of functions required
 % to define a System object with discrete state.

 % Public, tunable properties
 properties

 end

 properties(DiscreteState)
 CycleNum;
 end

 % Pre-computed constants
 properties(Access = private)
 UAObj;
 DeviceNode;
 Cycle_U;
 Cycle_Y;
 TestCycleNum;
 PreviousCycleNum;
 end

 methods(Access = protected)
 function setupImpl(obj)
 % Perform one-time calculations, such as computing constants
 % init opc UA server connection
 obj.UAObj = opcua('opc.tcp://localhost:4840');

25 Examples Book

25-78

 connect(obj.UAObj);
 obj.DeviceNode = findNodeByName(obj.UAObj.Namespace,'DeviceSet','-once');
 obj.Cycle_U = findNodeByName(obj.DeviceNode,'cycle_U');
 obj.Cycle_Y = findNodeByName(obj.DeviceNode,'cycle_Y');
 obj.TestCycleNum = findNodeByName(obj.DeviceNode,'testCycleNum');
 obj.PreviousCycleNum = findNodeByName(obj.DeviceNode,'previousCycleNum');
 end

 function y = stepImpl(obj,u)
 % Implement algorithm. Calculate y as a function of input u and
 % discrete states.
 obj.CycleNum = obj.CycleNum+1;
 writeValue(obj.UAObj, obj.Cycle_U, u);
 writeValue(obj.UAObj, obj.TestCycleNum, obj.CycleNum);

 valueUpdated = false;
 for rct = 1:100
 previousCycleNumValue = readValue(obj.UAObj, obj.PreviousCycleNum);
 if previousCycleNumValue == obj.CycleNum
 valueUpdated = true;
 y = readValue(obj.UAObj, obj.Cycle_Y);
 break
 end
 pause(0.001)
 end

 if ~valueUpdated
 error('not get the value for cycle number %d', obj.CycleNum);
 end
 end

 function resetImpl(obj)
 % Initialize / reset discrete-state properties
 obj.CycleNum = 0;
 writeValue(obj.UAObj, obj.TestCycleNum, obj.CycleNum);
 writeValue(obj.UAObj, obj.PreviousCycleNum, obj.CycleNum);
 end

 function out = getOutputSizeImpl(obj)
 out = propagatedInputSize(obj,1);
 end

 function out = getOutputDataTypeImpl(obj)
 out = propagatedInputDataType(obj,1);
 end

 function c1 = isOutputComplexImpl(obj)
 c1 = false;
 end

 function c1 = isOutputFixedSizeImpl(obj)
 c1 = true;
 end

 function s = getDiscreteStateImpl(obj)
 s = obj.CycleNum;
 end

 Verify Generated Code by Using Cosimulation

25-79

 end
end

Compile, and Simulate the Codesys Project

The Codesys project file runs the generated code on the soft PLC. If you have the Codesys V3.5.SP16
+ IDE, use the plc-cosim_v3sp16.project as the project file. If you have the Codesys V3.5.SP16
Patch 1+ IDE, use the plc-cosim_v3sp16patch1.project as the project file.

1 In the Windows ® system tray, select CODESYS Control Win SysTray -x64, right-click, and select
Start PLC.

2 Open the project file based on the Codesys Target IDE version.
3 Double-click CODESYS_Control_Win_V3_x64 and select Scan Network.

4 In the Scan Network tab, select your device in the Select Device window. Click OK.

5 Select Build > Build.

25 Examples Book

25-80

6.Select Online > Login.

7. Select Debug > Start.

 Verify Generated Code by Using Cosimulation

25-81

The soft PLC is now running the generated code.

Simulate the Model and Verify Generated Code

Simulate the Simulink ™ model and verify the generated code by comparing the simulation model
results to the soft PLC results.The soft PLC results are retrieved by using the OPC UA connection.

1 Open the simple_cosim.slx file for the Simulink model.

% open_system('simple_cosim')

2. Simulate the model. Verify the generated code by comparing the model simulation results to the
soft PLC cosimulation results.

25 Examples Book

25-82

See Also

• “Test Bench Verification” on page 4-2
• “External Mode Logging” on page 14-2

 Verify Generated Code by Using Cosimulation

25-83

PLC Coder Model Advisor

• “PLC Coder Checks in Model Advisor Overview” on page 26-2
• “Industry standard checks overview” on page 26-3
• “Define names to avoid” on page 26-4
• “Define use of case (capitals)” on page 26-5
• “Define maximum variable name length” on page 26-6
• “Comments must describe purpose of component” on page 26-7
• “Avoid nested comments” on page 26-8
• “Define maximum number of input/output/in-out variables of a Program Organization Unit (POU)”

on page 26-9
• “Define type prefixes for variables (if used)” on page 26-10

26

PLC Coder Checks in Model Advisor Overview
The Simulink PLC Coder checks in the Model Advisor verify your Simulink model or subsystem for
compatibility with PLC Coder code generation. Update suboptimal conditions or settings identified by
using the report generated by running the model advisor checks. To learn about Model Advisor, see
“Run Simulink PLC Coder Model Advisor Checks” on page 27-2.

The left pane displays folders that perform various checks:

• Industry standard checks. This folder contains checks that verify whether model contains
reserved keyword names, names that exceed a maximum defined length, and so on.

T learn more about each individual check, right-click that check, and select What's This?

26 PLC Coder Model Advisor

26-2

Industry standard checks overview
These checks verify whether your Simulink model conforms to the industry-standard rules. Use the
checks in this folder to verify whether:

• Names in your model are not reserved keyword names.
• Names in your model have consistent upper case or lower case utilization.
• Subsystem names, top-level subsystem and port names, and signal and port names have the

recommended number of characters in length.
• Your model has comments that describe the role of the subsystem, functions, and so on.
• Your model does not have nested comments.
• Your model subsystem inputs and outputs do not exceed the user defined maximum input and

output variables.
• Your model variables use prefixes defined as part of the model PLC code generation configuration

settings.

 Industry standard checks overview

26-3

Define names to avoid
Check ID:mathworks.PLC.NamesToAvoid

Check that model does not contain names that are reserved keywords.

Description
This check displays a warning when names in the model match reserved names defined in a keywords
list file.

Results and Recommended Actions
Condition Recommended Action
The model contains names that must be avoided. Update the names displayed in the result window

so that they do not match any names in the
reserved keywords file and rerun the check.

26 PLC Coder Model Advisor

26-4

Define use of case (capitals)
Check ID:mathworks.PLC.UseOfCase

Check that model consistently uses capital letters.

Description
This check displays a warning when names across the model use case (capitals) inconsistently.

Input Parameters
To run this check, set the case style to any of these options:

• alllowercase
• ALLUPPERCASE
• UpperCamelCase
• lowerCamelCase

Results and Recommended Actions
Condition Recommended Action
The names across the model are not consistent. Update the names displayed in the result window

to match the case style set in input parameters
and rerun the check.

 Define use of case (capitals)

26-5

Define maximum variable name length
Check ID:mathworks.PLC.AcceptableNameLength

Check that a model contains names that do not exceed a predefined length.

Description
This check displays a warning when a model has names that exceed a predefined length.

Input Parameters
To run this check, set the maximum variable name length in Maximum acceptable length.

Results and Recommended Actions
Condition Recommended Action
This model contains names longer than the
Maximum acceptable length.

Update the names displayed in the result window
so that they do not exceed the maximum variable
length set in Maximum acceptable length and
rerun the check.

26 PLC Coder Model Advisor

26-6

Comments must describe purpose of component
Check ID:mathworks.PLC.Comments

Check that a model component for code generation contains comments describing the purpose of the
component.

Description
This check displays a warning when a model description has no comments describing its functionality.

Results and Recommended Actions
Condition Recommended Action
The function block has no comment. Add a description to the model and rerun the

check.

 Comments must describe purpose of component

26-7

Avoid nested comments
Check ID:mathworks.PLC.NestedComments

Check that a model component for code generation does not contain nested comments.

Description
This check displays a warning when a model description has nested comments.

Results and Recommended Actions
Condition Recommended Action
Avoid nesting of multi-line comments. Remove nested comments from the model

description and rerun the check.

26 PLC Coder Model Advisor

26-8

Define maximum number of input/output/in-out variables of a
Program Organization Unit (POU)

Check ID:mathworks.PLC.MaxInOut

Check that model's input variables, output variables, and in-out variables are within a predefined
limit.

Description
This check displays a warning when the number of input variables, output variables, and in-out
variables of a model exceed the number of predefined maximum variables.

Input Parameters
To run this check, set the maximum number of variables in Maximum number of I/O variables.

Results and Recommended Actions
Condition Recommended Action
The function block has more than Maximum
number of I/O variables variables.

Reduce the number of I/O variables and rerun the
check.

 Define maximum number of input/output/in-out variables of a Program Organization Unit (POU)

26-9

Define type prefixes for variables (if used)
Check ID:mathworks.PLC.TypePrefixCheck

Check that model's data types use a predefined prefix.

Description
This check displays a warning when the model contains names that have invalid prefixes.

Results and Recommended Actions
Condition Recommended Action
The model contains names that have invalid
prefixes.

Add the prefixes displayed in the results window
to the variable names and rerun the check.

26 PLC Coder Model Advisor

26-10

Using the PLC Coder Model Advisor

27

Run Simulink PLC Coder Model Advisor Checks
In this section...
“Open the Model Advisor” on page 27-2
“Run Checks in the Model Advisor” on page 27-2
“Display Check Results in the Model Advisor Report” on page 27-3
“Fix Warnings or Failures” on page 27-4
“Save and Restore Model Advisor State” on page 27-4

The Simulink PLC Coder checks in Simulink Model Advisor checks a model or subsystem for variable
names, name lengths, comments, and so on that can result in a failure to import the generated code.
The Model Advisor produces a report that lists the checks that were run and the conditions that
caused warnings.

Open the Model Advisor
To open the Model Advisor:

• In the Modeling tab, select Model Advisor. In the System Selector dialog box, select the model
or subsystem that you want to analyze, and click OK.

• Open the PLC Coder app. Select the model or subsystem. In the PLC Code tab, select Model
Advisor.

The table summarizes the Simulink PLC Coder Model Advisor checks that are available in the By
Product and By Task folders.

By Product or By Task folder Model Advisor Checks
Industry standard checks • “Define names to avoid” on page 26-4

• “Define use of case (capitals)” on page 26-5
• “Define maximum variable name length” on

page 26-6
• “Comments must describe purpose of

component” on page 26-7
• “Avoid nested comments” on page 26-8
• “Define maximum number of input/output/in-

out variables of a Program Organization Unit
(POU)” on page 26-9

• “Define type prefixes for variables (if used)”
on page 26-10

Run Checks in the Model Advisor
In the Model Advisor window, you can run individual checks or a group of checks. To run a check,
select the check box next to the check, and then click Run This Check.

To run a group of checks within a folder:

27 Using the PLC Coder Model Advisor

27-2

1 Select the checks that you want to run.
2 Select the folder that contains these checks, and then click Run Selected Checks.

For example, to run all the checks in the Industry standard checks folder, select the folder, and then
click Run Selected Checks.

Display Check Results in the Model Advisor Report
To display an HTML report of the check results, before you run the checks, select Show report after
run. Use this setting to generate a report for all the checks in the Simulink PLC Coder folder or for
all checks within a subfolder, such as the Industry standard checks folder.

If you did not select Show report after run, you can generate a report after you run the checks by
selecting Generate Report. Specify the Directory, Filename, and Format of the HTML report that
you want to generate.

This report shows typical results for a run of the Standard industry checks folder.

The report displays a run summary of the checks in the specified folder. As you run the checks, the
Model Advisor updates the reports with the latest information for each check in the folder. When you
run the checks at different times, timestamps appear at the top right of the report to indicate when
checks have been run. Checks that occurred during previous runs have a timestamp following the
check name. You can filter checks in the report to show checks that display a Warning, show checks
that Passed, and so on.

 Run Simulink PLC Coder Model Advisor Checks

27-3

Fix Warnings or Failures
When a model or subsystem has conditions that do not meet Industry standard checks, checks can

fail. After you run a Model Advisor analysis, this icon indicates checks that have warnings. A
warning result is informational. You can fix the reported issue or move on to the next task.

To fix warnings or failures, in the Result subpane, view the items that caused the warnings, take
action to fix those items and rerun the checks.

Save and Restore Model Advisor State
By default Simulink saves the state of the most recent Model Advisor session. The next time Model
Advisor is activated, it returns to the saved state. You can also save the current settings of the Model
Advisor to a named restore point. A restore point is a snapshot in time of the model, base workspace,
and Model Advisor. Later, you can restore your saved settings by loading the restore point data into
the Model Advisor.

You can use this data restore point to revert changes to your model in response to recommendations
from the Model Advisor. For example, you can save a model and restore point to undo your changes if
the Model Advisor reports a warning after running a certain check. You can also restore the default
configuration of the Model Advisor. In the Model Advisor window, select Settings > Restore Default
Configuration.

To save the Model Advisor state, in the Model Advisor window, select File > Save Restore Point As.
Enter a Name and Description, and then click Save. You can save more than one restore point.

To restore a Model Advisor state, in the Model Advisor window, select File > Load Restore Point.
Select the restore point and click Load. When you load a restore point, the Model Advisor warns that
the restoration overwrites the current settings.

27 Using the PLC Coder Model Advisor

27-4

Custom Keyword List

28

Create Custom Target-Based Keyword List
In this section...
“Custom Keyword File Template” on page 28-2
“Custom Keyword File Usage Workflow” on page 28-19
“Verify Custom Keyword Name Changes in the Generated Code” on page 28-20

During code generation, Simulink PLC Coder uses a hook file to modify the target IDE default
keyword list and use keywords from the modified keyword list to check for and modify model
component names that match any keywords. Use MATLAB to create a callback hook file that contains
a target IDE-specific custom keyword list.

Custom Keyword File Template
The name of the custom keyword file must be plc_custom_keyword.m. To create a custom keyword
file for a single target IDE, use this template:

function keyword_list = plc_custom_keyword(keyword_list)
%

% Copyright 2020 The MathWorks, Inc.

 add_list = { 'state', ...
 'test',...
 'control',...
 };

 delete_list = { 'jmp', ...
 'method', ...
 'transition', ...
 };

 keyword_list = union(keyword_list, add_list);
 keyword_list = setdiff(keyword_list, delete_list);
end

To create a custom keyword file for multiple target IDEs, use this template:

function keyword_list = plc_custom_keyword(keyword_list)
%

% Copyright 2020 The MathWorks, Inc.

target = get_param(gcs,'PLC_TargetIDE');

 switch target
 case 'codesys23'
 add_list = {'state'};
 delete_list = {'jmp'};
 case 'pcworx60'
 add_list = {'control'};
 delete_list = {'method'};
 case 'codesys35'

28 Custom Keyword List

28-2

 add_list = {'mykeyword3'};
 delete_list = {'time'};
 case 'omron'
 add_list = {'mykeyword'};
 delete_list = {'reset'};
 case 'rslogix5000'
 add_list = {'mykeyword1'};
 delete_list = {'retain'};
 case 'tiaportal'
 dd_list = {'mykeyword2'};
 delete_list = {'sint'};
 otherwise
 add_list = {'test'};
 delete_list = {'transition'};
 end
 keyword_list = union(keyword_list, add_list);
 keyword_list = setdiff(keyword_list, delete_list);
end

The input argument keyword_list is the default keyword list for the selected target. Modify the
target IDE specific keyword list, by using the template to createadd_list and delete_list lists to
modify the default keyword_list . The keywords from the output keyword_list are used to match
and rename model components during code generation. Refer to these default keyword lists to decide
which keywords to add or remove to your custom keyword list.

These lists are the target IDE-specific default keyword_list lists.

Generic and PLCOpen ST Keyword List
 keyword_list = { ...
 'abs', ...
 'acos', ...
 'action', ...
 'add', ...
 'adr', ...
 'adrinst', ...
 'and', ...
 'andn', ...
 'any', ...
 'array', ...
 'asin', ...
 'at', ...
 'atan', ...
 'begin', ...
 'bitadr', ...
 'bool', ...
 'by', ...
 'byte', ...
 'cal', ...
 'calc', ...
 'calcn', ...
 'case', ...
 'configuration', ...
 'const', ...
 'constant', ...
 'continue', ...
 'cos', ...
 'counter', ...

 Create Custom Target-Based Keyword List

28-3

 'date', ...
 'data_and_time', ...
 'dint', ...
 'div', ...
 'd', ...
 'do', ...
 'ds', ...
 'dt', ...
 'dword', ...
 'else', ...
 'elsif', ...
 'en', ...
 'end', ...
 'end_action', ...
 'end_case', ...
 'end_const', ...
 'end_for', ...
 'end_function', ...
 'end_function_block', ...
 'end_if', ...
 'end_program', ...
 'enf_configuration', ...
 'end_repeat', ...
 'end_step', ...
 'end_struct', ...
 'end_type', ...
 'end_var', ...
 'end_while', ...
 'eno', ...
 'eq', ...
 'exit', ...
 'exp', ...
 'expt', ...
 'f_edge', ...
 'false', ...
 'for', ...
 'function', ...
 'function_block', ...
 'from', ...
 'ge', ...
 'gt', ...
 'if', ...
 'indexof', ...
 'ini', ...
 'initial_step', ...
 'int', ...
 'jmp', ...
 'jmpc', ...
 'jmpcn', ...
 'l', ...
 'ld', ...
 'ldn', ...
 'le', ...
 'lint', ...
 'limit', ...
 'ln', ...
 'log', ...
 'lreal', ...

28 Custom Keyword List

28-4

 'lt', ...
 'lword', ...
 'max', ...
 'method', ...
 'min', ...
 'mod', ...
 'move', ...
 'mul', ...
 'mux', ...
 'n', ...
 'ne', ...
 'non_retain', ...
 'not', ...
 'of', ...
 'on', ...
 'or', ...
 'orn', ...
 'p', ...
 'persistent', ...
 'pointer', ...
 'program', ...
 'r', ...
 'r_edge', ...
 'read_only', ...
 'read_write', ...
 'real', ...
 'repeat', ...
 'reset', ...
 'resource', ...
 'ret', ...
 'retain', ...
 'retc', ...
 'retcn', ...
 'return', ...
 'rol', ...
 'ror', ...
 's', ...
 'sd', ...
 'sel', ...
 'shl', ...
 'shr', ...
 'sin', ...
 'sint', ...
 'sizeof', ...
 'sl', ...
 'sqrt', ...
 'st', ...
 'step', ...
 'stn', ...
 'string', ...
 'struct', ...
 'sub', ...
 'tan', ...
 'task', ...
 'then', ...
 'time', ...
 'timer', ...
 'time_of_day', ...

 Create Custom Target-Based Keyword List

28-5

 'to', ...
 'tod', ...
 'transition', ...
 'true', ...
 'trunc', ...
 'type', ...
 'udint', ...
 'uint', ...
 'ulint', ...
 'until', ...
 'usint', ...
 'var', ...
 'var_access', ...
 'var_config', ...
 'var_constant', ...
 'var_external', ...
 'var_global', ...
 'var_in_out', ...
 'var_input', ...
 'var_output', ...
 'var_temp', ...
 'while', ...
 'with', ...
 'word', ...
 'wstring', ...
 'xor', ...
 'xorn', ...
 };

Omron Keyword List

 omron_list = { ...
 'np', ...
 'up',...
 };

Rockwell Keyword List

 rockwell_list = { ...
 'control',...
 };

Selectron Keyword List

 selectron_list = { ...
 '&' ...
 '(' ...
 ')' ...
 '*' ...
 '**' ...
 '+' ...
 '-' ...
 '/' ...
 '<' ...
 '<=' ...
 '<>' ...
 '=' ...
 '>' ...

28 Custom Keyword List

28-6

 '>=' ...
 'ACTION' ...
 'ADD' ...
 'AND' ...
 'ANDN' ...
 'ANY' ...
 'ANY_BIT' ...
 'ANY_DATE' ...
 'ANY_DUT' ...
 'ANY_FB' ...
 'ANY_INT' ...
 'ANY_NUM' ...
 'ANY_REAL' ...
 'ARRAY' ...
 'AT' ...
 'BODY' ...
 'BOOL' ...
 'BY' ...
 'BYTE' ...
 'CAL' ...
 'CALC' ...
 'CALCN' ...
 'CASE' ...
 'CONFIGURATION' ...
 'CONSTANT' ...
 'DATE' ...
 'DATE_AND_TIME' ...
 'DINT' ...
 'DIV' ...
 'DO' ...
 'DT' ...
 'DWORD' ...
 'ELSE' ...
 'ELSIF' ...
 'EN' ...
 'END_ACTION' ...
 'END_BODY' ...
 'END_CASE' ...
 'END_CONFIGURATION' ...
 'END_FOR' ...
 'END_FUNCTION' ...
 'END_FUNCTION_BLOCK' ...
 'END_IF' ...
 'END_PLC_CONFIG' ...
 'END_PROGRAM' ...
 'END_REPEAT' ...
 'END_RESOURCE' ...
 'END_STEP' ...
 'END_STRUCT' ...
 'END_TRANSITION' ...
 'END_TYPE' ...
 'END_VAR' ...
 'END_WHILE' ...
 'ENO' ...
 'EQ' ...
 'EXIT' ...
 'FALSE' ...
 'FOR' ...

 Create Custom Target-Based Keyword List

28-7

 'FROM' ...
 'FUNCTION' ...
 'FUNCTION_BLOCK' ...
 'F_EDGE' ...
 'GE' ...
 'GT' ...
 'IF' ...
 'INITIAL_STEP' ...
 'INT' ...
 'INTERVAL' ...
 'JMP' ...
 'JMPC' ...
 'JMPCN' ...
 'LD' ...
 'LDN' ...
 'LE' ...
 'LINT' ...
 'LREAL' ...
 'LT' ...
 'LWORD' ...
 'MOD' ...
 'MUL' ...
 'NE' ...
 'NOT' ...
 'OF' ...
 'OFFSETOF' ...
 'ON' ...
 'OR' ...
 'ORN' ...
 'PLC_CONFIG' ...
 'PRIORITY' ...
 'PROGRAM' ...
 'R' ...
 'R1' ...
 'READ_ONLY' ...
 'READ_WRITE' ...
 'REAL' ...
 'REPEAT' ...
 'RESOURCE' ...
 'RET' ...
 'RETAIN' ...
 'RETC' ...
 'RETCN' ...
 'RETURN' ...
 'R_EDGE' ...
 'S' ...
 'S1' ...
 'SINGLE' ...
 'SINT' ...
 'SIZEOF' ...
 'ST' ...
 'STEP' ...
 'STN' ...
 'STRING' ...
 'STRUCT' ...
 'SUB' ...
 'TASK' ...
 'THEN' ...

28 Custom Keyword List

28-8

 'TIME' ...
 'TIME_OF_DAY' ...
 'TO' ...
 'TOD' ...
 'TRANSITION' ...
 'TRUE' ...
 'TYPE' ...
 'UDINT' ...
 'UINT' ...
 'ULINT' ...
 'UNTIL' ...
 'USINT' ...
 'VAR' ...
 'VAR_ACCESS' ...
 'VAR_CONSTANT' ...
 'VAR_CONSTANT_RETAIN' ...
 'VAR_EXTERNAL' ...
 'VAR_EXTERNAL_CONSTANT' ...
 'VAR_EXTERNAL_CONSTANT_RETAIN' ...
 'VAR_EXTERNAL_RETAIN' ...
 'VAR_GLOBAL' ...
 'VAR_GLOBAL_CONSTANT' ...
 'VAR_GLOBAL_CONSTANT_RETAIN' ...
 'VAR_GLOBAL_RETAIN' ...
 'VAR_INPUT' ...
 'VAR_INPUT_RETAIN' ...
 'VAR_IN_EXT' ...
 'VAR_IN_OUT' ...
 'VAR_IN_OUT_CONSTANT' ...
 'VAR_OUTPUT' ...
 'VAR_OUTPUT_RETAIN' ...
 'VAR_RETAIN' ...
 'VAR_TEMP' ...
 'WHILE' ...
 'WITH' ...
 'WORD' ...
 'XOR' ...
 'XORN' ...
 '_ACTION' ...
 '_SFC_DEBUG' ...
 '_STEP' ...
 'auto' ...
 'break' ...
 'char' ...
 'const' ...
 'continue' ...
 'default' ...
 'double' ...
 'enum' ...
 'extern' ...
 'float' ...
 'goto' ...
 'if' ...
 'inline' ...
 'long' ...
 'register' ...
 'restrict' ...
 'short' ...

 Create Custom Target-Based Keyword List

28-9

 'signed' ...
 'static' ...
 'switch' ...
 'typedef' ...
 'union' ...
 'unsigned' ...
 'void' ...
 'volatile' ...
 };

Siemens STEP7 Keyword List

 step7_keyword_list = { ...
 'fb', ...
 'db', ...
 'ob', ...
 'fc', ...
 'ib', ...
 'mb', ...
 'udt', ...
 'di', ...
 'scale', ...
 'B', ...
 'ref', ...
 'switch', ...
 'norm', ...
 'set', ...
 'ss'
 };

Siemens TIA Portal Keyword List

 tia_portal_keyword_list = { ...
 'a_dead_b', ...
 'abs_ctrl', ...
 'abs_diag', ...
 'abs_init', ...
 'act_tint', ...
 'ag_cntex', ...
 'ag_cntrl', ...
 'ag_lock', ...
 'ag_recv', ...
 'ag_send', ...
 'ag_unlock', ...
 'alarm_d', ...
 'alarm_dq', ...
 'alarm_s', ...
 'alarm_sc', ...
 'alarm_sq', ...
 'analog', ...
 'as_dial', ...
 'asi_3422', ...
 'asi_ctrl', ...
 'asin', ...
 'atan', ...
 'ath', ...
 'att', ...
 'attach', ...

28 Custom Keyword List

28-10

 'attr_db', ...
 'bcdcpl', ...
 'bitsum', ...
 'blkmov', ...
 'brcv', ...
 'bsend', ...
 'bt_lt', ...
 'by', ...
 'c_cntrl', ...
 'cam_ctrl', ...
 'cam_diag', ...
 'cam_init', ...
 'can_dint', ...
 'can_tint', ...
 'cdt', ...
 'ceil', ...
 'ch_diag', ...
 'chars_to_strg', ...
 'cir', ...
 'cj_t_par', ...
 'cnt2_ctr', ...
 'cnt2rdpn', ...
 'cnt2wrpn', ...
 'cnt_ctl1', ...
 'cnt_ctl2', ...
 'cnt_ctrl', ...
 'compress', ...
 'concat', ...
 'concat_date_ltod', ...
 'concat_date_tod', ...
 'cont_c', ...
 'cont_s', ...
 'convert', ...
 'count', ...
 'countofelements', ...
 'crea_dbl', ...
 'creat_db', ...
 'create_db', ...
 'crp_in', ...
 'crp_out', ...
 'ctd', ...
 'ctrl_rtm', ...
 'ctu', ...
 'ctud', ...
 'd_act_dp', ...
 'datalogclear', ...
 'datalogclose', ...
 'datalogcreate', ...
 'datalogdelete', ...
 'datalognewfile', ...
 'datalogopen', ...
 'datalogwrite', ...
 'db', ...
 'db_any_to_variant', ...
 'dcat', ...
 'dead_t', ...
 'deadband', ...
 'deco', ...

 Create Custom Target-Based Keyword List

28-11

 'del_db', ...
 'del_si', ...
 'delete', ...
 'delete_db', ...
 'demux', ...
 'deserialize', ...
 'detach', ...
 'dev', ...
 'devicestates', ...
 'diag_inf', ...
 'diag_rd', ...
 'dif', ...
 'digital', ...
 'dis_airt', ...
 'dis_irt', ...
 'div', ...
 'dmsk_flt', ...
 'do', ...
 'dp_ctrl', ...
 'dp_diag', ...
 'dp_recv', ...
 'dp_send', ...
 'dp_topol', ...
 'dpnrm_dg', ...
 'dprd_dat', ...
 'dpsyc_fr', ...
 'dpwr_dat', ...
 'drum', ...
 'drum_x', ...
 'eb', ...
 'en', ...
 'en_airt', ...
 'en_irt', ...
 'enco', ...
 'encoderabssensordp', ...
 'encoderet200s1count', ...
 'encoderet200s1ssi', ...
 'encoderfm350', ...
 'encoderim174', ...
 'encoderim178', ...
 'encodersinamics', ...
 'encodersm338', ...
 'encoderuniversal', ...
 'endis_pw', ...
 'eno', ...
 'err_mon', ...
 'exit', ...
 'fb', ...
 'f_trig', ...
 'failsafe_protect', ...
 'fifo', ...
 'fill', ...
 'fill_blk', ...
 'find', ...
 'floor', ...
 'fmt_cj_t', ...
 'fmt_ds1', ...
 'fmt_par', ...

28 Custom Keyword List

28-12

 'fmt_pid', ...
 'fmt_pv', ...
 'fmt_tun', ...
 'force_355', ...
 'frac', ...
 'frequenc', ...
 'ftp_cmd', ...
 'fuz_355', ...
 'gb', ...
 'gadr_lgc', ...
 'gen_diag', ...
 'gen_usrmsg', ...
 'geo2log', ...
 'geo_log', ...
 'get', ...
 'get_alarmstate', ...
 'get_diag', ...
 'get_err_id', ...
 'get_error', ...
 'get_features', ...
 'get_im_data', ...
 'get_name', ...
 'get_s', ...
 'getblockname', ...
 'getinstancename', ...
 'getinstancepath', ...
 'getio', ...
 'getio_part', ...
 'getstationinfo', ...
 'getsymbolname', ...
 'getsymbolpath', ...
 'high_speed_counter', ...
 'hta', ...
 'i_abort', ...
 'i_get', ...
 'i_put', ...
 'imc', ...
 'init_rd', ...
 'insert', ...
 'integ', ...
 'inventory', ...
 'io2mod', ...
 'ip_config', ...
 'is_array', ...
 'join', ...
 'lag1st', ...
 'lag2nd', ...
 'lead_lag', ...
 'led', ...
 'left', ...
 'len', ...
 'lgc_gadr', ...
 'lifo', ...
 'limalarm', ...
 'limit', ...
 'limiter', ...
 'ln', ...
 'loc_time', ...

 Create Custom Target-Based Keyword List

28-13

 'log2geo', ...
 'log2mod', ...
 'log_geo', ...
 'logical_trigger', ...
 'lp_sched', ...
 'lp_sched_m', ...
 'lt_bt', ...
 'max', ...
 'max_len', ...
 'mb_client', ...
 'mb_server', ...
 'mc_control', ...
 'mc_gearin', ...
 'mc_halt', ...
 'mc_home', ...
 'mc_init', ...
 'mc_moveabsolute', ...
 'mc_movejog', ...
 'mc_moverelaive', ...
 'mc_moverelative', ...
 'mc_movevelocity', ...
 'mc_power', ...
 'mc_reset', ...
 'mc_simulation', ...
 'mc_stopmotion', ...
 'mcat', ...
 'md', ...
 'mid', ...
 'mn', ...
 'mod', ...
 'modb_341', ...
 'modbus_comm_load', ...
 'modbus_master', ...
 'modbus_slave', ...
 'modulestates', ...
 'move_blk', ...
 'move_blk_variant', ...
 'msk_flt', ...
 'mux', ...
 'none', ...
 'nonlin', ...
 'norm', ...
 'norm_x', ...
 'not', ...
 'notify', ...
 'null', ...
 'ob', ...
 'of', ...
 'or', ...
 'outputet200s2ao', ...
 'outputim174', ...
 'outputim178', ...
 'outputmm4_dp', ...
 'outputsinamics', ...
 'outputsm332', ...
 'outputuniversal', ...
 'override', ...
 'pb', ...

28 Custom Keyword List

28-14

 'p3964_config', ...
 'p_print', ...
 'p_prt341', ...
 'p_rcv', ...
 'p_rcv_rk', ...
 'p_reset', ...
 'p_send', ...
 'p_snd_rk', ...
 'pack', ...
 'para_ctl', ...
 'parm_mod', ...
 'pe_cmd', ...
 'pe_cmd_cp', ...
 'pe_ds3_write_et200s', ...
 'pe_ds3_write_et200s_cp', ...
 'pe_end_rsp', ...
 'pe_error_rsp', ...
 'pe_get_mode_rsp', ...
 'pe_i_dev', ...
 'pe_i_dev_cp', ...
 'pe_identify_rsp', ...
 'pe_list_modes_rsp', ...
 'pe_measurement_list_rsp', ...
 'pe_measurement_value_rsp', ...
 'pe_pem_status_rsp', ...
 'pe_start_end', ...
 'pe_start_end_cp', ...
 'pe_start_rsp', ...
 'pe_wol', ...
 'peek', ...
 'peek_bool', ...
 'pg_dial', ...
 'pid', ...
 'pid_3step', ...
 'pid_compact', ...
 'pid_cp', ...
 'pid_es', ...
 'pid_fm', ...
 'pid_par', ...
 'pid_temp', ...
 'pip', ...
 'pnio_alarm', ...
 'pnio_recv', ...
 'pnio_rw_rec', ...
 'pnio_send', ...
 'poke', ...
 'poke_blk', ...
 'poke_bool', ...
 'port', ...
 'port_config', ...
 'preset_timer', ...
 'program_alarm', ...
 'protect', ...
 'prvrec', ...
 'pulse', ...
 'pulsegen', ...
 'pulsegen_m', ...
 'put', ...

 Create Custom Target-Based Keyword List

28-15

 'qry_cint', ...
 'qry_dint', ...
 'qry_tint', ...
 'r_trig', ...
 'ralrm', ...
 'rcvrec', ...
 'rd_addr', ...
 'rd_dpar', ...
 'rd_dpara', ...
 'rd_dparm', ...
 'rd_lgadr', ...
 'rd_loc_t', ...
 'rd_rec', ...
 'rd_sinfo', ...
 'rd_sys_t', ...
 'rdrec', ...
 'rdsysst', ...
 're_trigr', ...
 'read', ...
 'read_355', ...
 'read_big', ...
 'read_dbl', ...
 'read_err', ...
 'read_little', ...
 'read_rtm', ...
 'read_si', ...
 'readfromarraydb', ...
 'readfromarraydbl', ...
 'receive_config', ...
 'receive_p2p', ...
 'receive_reset', ...
 'recipeexport', ...
 'recipeimport', ...
 'reconfigiosystem', ...
 'repl_val', ...
 'replace', ...
 'reset', ...
 'reset_timer', ...
 'reseti', ...
 'return', ...
 'right', ...
 'rmp_soak', ...
 'roc_lim', ...
 'rol', ...
 'ror', ...
 'round', ...
 'rt_info', ...
 'rtm', ...
 'runtime', ...
 's_cd', ...
 's_conv', ...
 's_cu', ...
 's_cud', ...
 's_ltint', ...
 's_modb', ...
 's_odt', ...
 's_odts', ...
 's_offdt', ...

28 Custom Keyword List

28-16

 's_pext', ...
 's_pulse', ...
 's_rcv', ...
 's_rts', ...
 's_send', ...
 's_ussi', ...
 's_ussr', ...
 's_usst', ...
 's_v24', ...
 's_vset', ...
 's_vstat', ...
 's_xon', ...
 'scale', ...
 'scale_m', ...
 'scale_x', ...
 'seg', ...
 'sel', ...
 'send_config', ...
 'send_p2p', ...
 'serialize', ...
 'set', ...
 'set_addr', ...
 'set_cint', ...
 'set_clks', ...
 'set_features', ...
 'set_param', ...
 'set_rtm', ...
 'set_sw', ...
 'set_sw_s', ...
 'set_timezone', ...
 'set_tint', ...
 'set_tintl', ...
 'seti', ...
 'setio', ...
 'setio_part', ...
 'shl', ...
 'shr', ...
 'shrb', ...
 'signal_get', ...
 'signal_set', ...
 'sin', ...
 'smc', ...
 'sms_send', ...
 'snc_rtcb', ...
 'sp_gen', ...
 'split', ...
 'splt_ran', ...
 'sqr', ...
 'sqrt', ...
 'srt_dint', ...
 'stp', ...
 'strg_to_chars', ...
 'swap', ...
 'switch', ...
 'sync_pi', ...
 'sync_po', ...
 't_add', ...
 't_combine', ...

 Create Custom Target-Based Keyword List

28-17

 't_comp', ...
 't_config', ...
 't_conv', ...
 't_diag', ...
 't_diff', ...
 't_reset', ...
 't_sub', ...
 'tbl', ...
 'tbl_find', ...
 'tbl_tbl', ...
 'tbl_wrd', ...
 'tcon', ...
 'tcont_cp', ...
 'tcont_s', ...
 'tdiscon', ...
 'test_db', ...
 'this', ...
 'time_tck', ...
 'timestmp', ...
 'tmail_c', ...
 'to', ...
 'tof', ...
 'ton', ...
 'tonr', ...
 'tonr_x', ...
 'tp', ...
 'trcv', ...
 'trcv_c', ...
 'true', ...
 'trunc', ...
 'tsend', ...
 'tsend_c', ...
 'tun_ec', ...
 'tun_es', ...
 'turcv', ...
 'tusend', ...
 'typeof', ...
 'typeofelements', ...
 'ublkmov', ...
 'ufill_blk', ...
 'umove_blk', ...
 'unscale', ...
 'until', ...
 'updat_pi', ...
 'updat_po', ...
 'urcv', ...
 'urcv_s', ...
 'usend', ...
 'usend_s', ...
 'uss_drive_control', ...
 'uss_port_scan', ...
 'uss_read_param', ...
 'uss_write_param', ...
 'v24_set', ...
 'v24_set_340', ...
 'v24_stat', ...
 'v24_stat_340', ...
 'variant_to_db_any', ...

28 Custom Keyword List

28-18

 'variantget', ...
 'variantput', ...
 'wait', ...
 'wr_dparm', ...
 'wr_loc_t', ...
 'wr_parm', ...
 'wr_rec', ...
 'wr_sys_t', ...
 'wr_usmsg', ...
 'wrd_tbl', ...
 'writ_dbl', ...
 'write', ...
 'write_big', ...
 'write_little', ...
 'writetoarraydb', ...
 'writetoarraydbl', ...
 'wrrec', ...
 'wsr', ...
 'www', ...
 'x_abort', ...
 'x_get', ...
 'x_put', ...
 'x_rcv', ...
 'x_send', ...
 'B', ...
 'ref', ...
 'ss', ...
 };

Custom Keyword File Usage Workflow
This flowchart displays the process of using the custom keyword file:

 Create Custom Target-Based Keyword List

28-19

You must add the plc_custom_keyword.m file to the MATLAB path for custom keyword checks to
work.

Verify Custom Keyword Name Changes in the Generated Code
This example shows how to create a custom keyword file and verify that the generated code contains
variables with names that have changed because they matched names in the keyword list.

1 Open the plcdemo_simple_subsystem example.
2 Open the SimpleSubsystem block. Change the input variable name from U to Controller.

28 Custom Keyword List

28-20

3 Create the plc_custom_keyword.m file by using this code:

function keyword_list = plc_custom_keyword(keyword_list)
%

% Copyright 2020 The MathWorks, Inc.

 add_list = { 'state', ...
 'test',...
 'controller',...
 };

 delete_list = { 'jmp', ...
 'method', ...
 'transition', ...
 };
 keyword_list = union(keyword_list, add_list);
 keyword_list = setdiff(keyword_list, delete_list);
end

4 Add the custom_plc_keyword.m file to the MATLAB path. Open the PLC Coder app. On the
PLC Code tab, click Generate PLC Code.

5 Open the generated code file. Verify that Controller is changed to b_Controller.

 Create Custom Target-Based Keyword List

28-21

28 Custom Keyword List

28-22

Plugin Based Targets

29

Create Custom Target IDE for Code Generation
In this section...
“Plugin-Based Code Generation Workflow” on page 29-2
“Plugin Options” on page 29-5
“Generate Code by Using Plugin-Based Target IDE” on page 29-15

Simulink PLC Coder currently supports plugin-based target IDEs such as Selectron CAP1131, Omron
Sysmac Studio, and so on. For your plugin-based custom target IDEs that are not supported, generate
PLCOpen XML-or ASCII-compliant structured text code. Customize the generated code to meet your
target IDE requirements, by leveraging the built-in plugin options in Simulink PLC Coder.

Plugin-Based Code Generation Workflow
To generate code for your custom plugin-based target IDEs:

29 Plugin Based Targets

29-2

 Create Custom Target IDE for Code Generation

29-3

Follow the flowchart to create the plc_custom_ide.m and if required the
plc_precg_callback_IDEname.m, and plc_postcg_callback_IDEname.m files. To use these
files to create and generate code for your custom target IDE, see “Generate Code by Using Plugin-
Based Target IDE” on page 29-15.

Create plc_custom_ide.m file

Create plc_custom_ide.m by using this template:
function plc_ide_list = plc_custom_ide
% Copyright 2012-2021 The MathWorks, Inc.
 plc_ide_list(1) = get_ide_info_myplcopen;
end

function ide_info = get_ide_info_myplcopen
 ide_info.name = 'myplcopen';
 ide_info.description = 'My PLCopen XML';
 ide_info.path = ''; % IDE path
 ide_info.format = 'xml'; % generic|xml
 ide_info.fileExtension = 'xml';
 ide_info.cfg = get_ide_cfg_myplcopen;
 ide_info.precg_callback = 'plc_precg_callback_myplcopen';
 ide_info.postcg_callback = 'plc_postcg_callback_myplcopen';
 ide_info.xmltree_callback = PLCCoder.PLCCGMgr.PLC_PLUGIN_CG_CALLBACK_EMPTY;
 ide_info.pluginVersion = 2.2;
 ide_info.compatibleBuildVersion = 1.6;
end

function cfg = get_ide_cfg_myplcopen
 cfg.fConvertDoubleToSingle = true;
 cfg.fConvertNamedConstantToInteger = true;
 cfg.fConvertEnumToInteger = true;
 cfg.fConvertOutputInitValueToAssignment = true;
 cfg.fConvertTunableParamToInputVariable = true;
 cfg.fSimplifyFunctionCallExpr = true;
 cfg.fConvertOutputInitValueToAssignment = true;
end

• Set the name of your target IDE, by using ide_info.name. The Target IDE configuration setting
displays the name set in ide_info.description.

• If your target IDE is compliant with Generic ST standards, set ide_info.format = 'generic'.
If your target IDE is compliant with PLCOpen XML, set ide_info.format = 'xml'.

• Set where the generated code files are placed by using ide_info.path.
• Set the extension for your target IDE files by using ide_info.fileExtension.

In the function_cfg section of the file, set your plugin options. To enable the plugin, set the plugin
option to true. For example, cfg.fArrayInitialValueBrackets = true; enables the plugin. To
disable the plugin, set the plugin option to false. To decide which plugin options you need in the
plc_custom_ide.m file, see “Plugin Options” on page 29-5.

Create Callback Files

If your custom IDE requires pre- and post-code generation processing, create
plc_precg_callback_IDEname.m and plc_postcg_callback_IDEname.m files.
Preprocessing Callback File

The plc_precg_callback_IDEname.m file provides access to the intermediate generated code
representation. The intermediate code is stored in the controller struct data type, which contains
information such as name of the subsystem block, inputs, outputs, generated code body, and so on.
This callback is executed before the target-specific emitter function is called. To create a
plc_precg_callback_IDEname.m file, use this template:
function controller = plc_precg_callback_myplcopen(controller)
% Copyright 2012-2020 The MathWorks, Inc.

29 Plugin Based Targets

29-4

 % do modifications to the controller struct here, f.ex.:
 for i = 1:length(controller.components)
 controller.components(i).body = sprintf('<<header_placeholder>>\r\n%s',controller.components(i).body);
 end

end

Postprocessing Callback File

The plc_postcg_callback_IDEname.m file provides access to the generated code file. Use this file
to make the generated code match the syntax requirements for your custom target IDE. This file
reads in and makes changes to the generated code file, which is read in as a string file. To create a
plc_postcg_callback_IDEname.m file, use this template:
function generatedFiles = plc_postcg_callback_myplcopen(fileNames)
% Copyright 2012-2020 The MathWorks, Inc.

 fileName = fileNames{1};
 str = fileread(fileName);
% do modifications to str here, f.ex.:
% str = regexprep(str,'BOOL_TO_LREAL','BOOL_TO_INT');
% str = regexprep(str,'<USINT/>','<INT/>');
% str = regexprep(str, 'END_STRUCT','END_STRUCT;');

 [sHeader,eHeader] = regexp(str,'\(*.*?*\)');
 header = str(sHeader:eHeader);

 str = regexprep(str,'<<header_placeholder>>',header);

 sfprivate ('str2file', str, fileName);
 generatedFiles = {fileName};
end

Plugin Options
Generate custom code for your custom target IDE, by selecting from the plugin options listed in the
table.

Plugins for Data Type Transformation

Plugin Name Plugin
Purpose

When to Use
Plugin

Effect of Plugin on Generated Code

fConvertBooleanCa
st

Convert
boolean type
cast function
to an if-else
assignment.

If your target
IDE does not
support
boolean type
cast function
or operator.

Generated code with plugin disabled:
Out1 := DINT_TO_INT(BOOL_TO_DINT(In1) +...
 BOOL_TO_DINT(In2));

Generated code with plugin enabled:
IF In1 THEN
 temp1 := DINT#1;
ELSE
 temp1 := DINT#0;
END_IF;

IF In2 THEN
 temp2 := DINT#1;
ELSE
 temp2 := DINT#0;
END_IF;

Out1 := DINT_TO_INT(temp1 + temp2);

 Create Custom Target IDE for Code Generation

29-5

fConvertDoubleToS
ingle

Convert
double data
type to single
data type.

If your target
IDE does not
support
double data
types.

The
generated
code double
data type
variables are
converted to
single data
types. A
warning
message is
generated
during code
generation
that data
types that are
not supported
have been
found and
converted.
LREAL data
types are
replaced by
REAL data
types.

The values in
the generated
code may be
different from
the simulation
values.

Generated code with plugin disabled:
VAR_INPUT
 ssMethodType: SINT;
 U: LREAL;
END_VAR
VAR_OUTPUT
 Y: LREAL;
END_VAR

Generated code with plugin enabled:
VAR_INPUT
 ssMethodType: SINT;
 U: REAL;
END_VAR
VAR_OUTPUT
 Y: REAL;
END_VAR

29 Plugin Based Targets

29-6

fConvertDoubleToS
ingleEmitter

Convert
double data
types to
single data
types.

If your target
IDE does not
support
double data
types and you
want to
preserve
values after
conversion.

The
generated
code double
data type
variables are
converted to
single data
types. A
warning
message is
generated
during code
generation
that data
types that are
not supported
have been
found and
converted.
LREAL data
types are
replaced by
REAL data
types.

The values in
the generated
code match
the simulation
values unless
they exceed
the REALMAX
bounds.

Generated code with plugin disabled:
VAR_INPUT
 ssMethodType: SINT;
 U: LREAL;
END_VAR
VAR_OUTPUT
 Y: LREAL;
END_VAR

Generated code with plugin enabled:
VAR_INPUT
 ssMethodType: SINT;
 U: REAL;
END_VAR
VAR_OUTPUT
 Y: REAL;
END_VAR

 Create Custom Target IDE for Code Generation

29-7

fConvertEnumToInt
eger

Convert enum
data types to
integer data
types.

If your target
IDE does not
support enum
data types.

Generated code with plugin disabled for a
target IDE that supports enum data type:
VAR_TEMP
 rtb_Switch: myEnum;
 in: myEnum;
END_VAR

Generated code with plugin enabled:
VAR_TEMP
 rtb_Switch: DINT;
 in: DINT;
END_VAR

fConvertUnsignedI
ntToSignedInt

Converts
unsigned
integer to
signed
integer.

If your target
does not
support
unsigned
integer data
type.

Generated code with plugin disabled:
FUNCTION_BLOCK Subsystem
VAR_INPUT
 In1: UDINT;
 In2: UDINT;
END_VAR
VAR_OUTPUT
 Out1: UDINT;
END_VAR

Generated code with plugin enabled:
FUNCTION_BLOCK Subsystem
VAR_INPUT
 In1: DINT;
 In2: DINT;
END_VAR
VAR_OUTPUT
 Out1: DINT;
END_VAR

fInt32AsBaseInt Sets int32
data type as
the default
integer data
type.

Setting int32
as the default
internal
integer data
type might
reduce the
number of
type cast
operations in
the generated
code.

Generated code with plugin disabled:
FUNCTION_BLOCK Subsystem
VAR_INPUT
 In1: SINT;
 In2: SINT;
END_VAR
VAR_OUTPUT
 Out1: SINT;
END_VAR
Out1 := DINT_TO_SINT(SINT_TO_DINT(In1) +...
 SINT_TO_DINT(In2));
END_FUNCTION_BLOCK

The generated code contains additional data
type conversion code.

Generated code with plugin enabled:
FUNCTION_BLOCK Subsystem
VAR_INPUT
 In1: DINT;
 In2: DINT;
END_VAR
VAR_OUTPUT
 Out1: DINT;
END_VAR
Out1 := In1 + In2));
END_FUNCTION_BLOCK

The generated code does not contain
additional data type conversion code.

29 Plugin Based Targets

29-8

fEmitEnumTypeInte
gerValue

Displays the
enum value
and
correspondin
g integer
value in the
generated
code.

To display the
enum values
and their
matching
integer values
in the
generated
code.

Generated code with plugin disabled:
TYPE PLCCommandState:
 (FILL, HOLD, EMPTY, ACTIVATE);
END_TYPE
TYPE PLCVesselState:
 (EMPTIED, NOT_FULL, FULL);
END_TYPE
TYPE PLCValveState:
 (SHUT, OPEN);
END_TYPE

Generated code with plugin enabled:
TYPE PLCCommandState:
 (FILL:=0, HOLD:=1, EMPTY:=2, ACTIVATE:=3);
END_TYPE
TYPE PLCVesselState:
 (EMPTIED:=0, NOT_FULL:=1, FULL:=2);
END_TYPE
TYPE PLCValveState:
 (SHUT:=0, OPEN:=1);
END_TYPE

Plugins for Syntax Change

Plugin Name Plugin
Purpose

When to Use
Plugin

Effect of Plugin on Generated Code

fArrayInitialValu
eBrackets

Encloses
array
initialization
in the
declaration
area within
brackets.

If your target
IDE requires
enclosing
array
initialization
in the
declaration
area in
brackets.

Generated code with plugin disabled:
 EnableSetpoint_ZCE: ARRAY [0..2] OF USINT:=3,3,3

Generated code with plugin enabled::
 EnableSetpoint_ZCE: ARRAY [0..2] OF USINT:=[3,3,3]

fConvertAggregate
InitValueToAssign
ment

Converts
initial values
for aggregate
data types to
an
assignment
statement.

Target IDE
does not
support array
initialization
in the
declaration
area.

Generated code with plugin disabled:
ARRAY [0..1] OF LREAL := LREAL#0.0,LREAL#0.0998

Generated code with plugin enabled:
tb_U[0] := 0.0;
tb_U[1] := 0.0998;

fConvertAggregate
TypeFunctionToFB

Converts
functions with
aggregate
data types to
a function
block (FB).

Target IDE
supports
aggregate
data types for
function
blocks only.

Generated code with plugin disabled:
function foo(...):ARRAY [0..10] OF LREAL

Generated code with plugin enabled:
FUNCTION_BLOCK foo
VAR_OUTPUT
out1: ARRAY [0..10] OF LREAL;
END_VAR

 Create Custom Target IDE for Code Generation

29-9

fConvertFunctionT
oFB

Convert
function to
function block
(FB).

Target IDE
does not
support FUN
notation but
supports FB
notation.

fConvertOutputIni
tValueToAssignmen
t

Convert
output
variable
initialization
to an
assignment.

Target IDE
does not
allow initial
value
definition and
requires an
assignment
statement.

Generated code with plugin disabled:
FUNCTION_BLOCK foo
VAR_OUTPUT
somevalue: DINT := 100;
END_VAR

Generated code with plugin enabled:
FUNCTION_BLOCK foo
VAR_OUTPUT
somevalue: DINT;
END_VAR
somevalue := 100;

fEmitVarDeclarati
onBeforeDescripti
on

Toggles
whether the
variable
description
appears
before or
after the
variable
declaration.

Target IDE
requires
variable
declaration
before the
variable
description.

Generated code with plugin disabled:

VAR_GLOBAL CONSTANT
 K3: REAL := 0.3;
 END_VAR

Generated code with plugin enabled:

VAR_GLOBAL CONSTANT
 K3: REAL := 0.3;
 END_VAR

fErrorOnTrailingU
S

Code
generation
fails when it
encounters
variable
names with a
trailing
underscore.

Target IDE
does not
support
names with a
trailing
underscore.

Code generation fails with this message
$name$ has a trailing '_'. 'IDE
name' names must not end with '_'.

fHoistArrayIndexE
xprs

Moves
expressions
out of array
indices and
creates a
temporary
variable for
the
expression.

Target IDE
does not
support
expressions
for array
indices.

Generated code with plugin disabled:
EnvCur[TRUNC(j) - 1]

Generated code with plugin enabled:
temp1 := TRUNC(j) - 1;
EnvCur[temp1]

fSimplifyFunction
CallExpr

Simplifies the
function call
for simple
functions.

Target IDE
does not
allow
assignment
expressions in
function calls.

Generated code with plugin disabled:

y := simplefunction(u_0 := u);

Generated code with plugin enabled:

y := simplefunction(u);

29 Plugin Based Targets

29-10

fUseQualifiedType
Constant

Appends data
type to
constant
declaration.

Target IDE
requires data
type for
constants.

Generated code with plugin disabled:
a := 11;

Generated code with plugin enabled:
a := DINT#11;

Plugins for Interface Changes

Plugin Name Plugin
Purpose

When to Use
Plugin

Effect of Plugin on Generated Code

 Create Custom Target IDE for Code Generation

29-11

fConvertTunablePa
ramToInputVariabl
e

Converts
tunable
parameters to
function block
(FB) input
variables.

You want to
convert
tunable
parameters to
function block
inputs. This
allows you to
call a POU
with different
parameter
sets.

Generated code with plugin disabled:
FUNCTION_BLOCK Tunable_Param_to_Input
 24 VAR_INPUT
 25 ssMethodType: SINT;
 26 Input1: REAL;
 27 END_VAR
 28 VAR_OUTPUT
 29 Output1: REAL;
 30 END_VAR
 31 VAR
 32 DSTATE: REAL;
 33 END_VAR
 34 'ST'
 35 BODY
 36 CASE ssMethodType OF
 37 0:
 40 UnitDelay_DSTATE := 0.0;
 41
 42 1:
 43 Output1 := (Input1 - DSTATE) *
 TunableParam;
 48 DSTATE := Output1;
 50 END_CASE;
 52 END_BODY
 53 END_FUNCTION_BLOCK
 54

The TunableParam variable is not declared
as an input to the function block.

Generated code with plugin enabled:
FUNCTION_BLOCK Tunable_Param_to_Input
 24 VAR_INPUT
 25 TunableParam: LREAL;
 26 ssMethodType: SINT;
 27 Input1: REAL;
 28 END_VAR
 29 VAR_OUTPUT
 30 Output1: REAL;
 31 END_VAR
 32 VAR
 33 DSTATE: REAL;
 34 END_VAR
 35 'ST'
 36 BODY
 37 CASE ssMethodType OF
 38 0:
 39 DSTATE := 0.0;
 42
 43 1:
 44 Output1 := (Input1 - DSTATE) *
 TunableParam;
 49 DSTATE := Output1;
 51
 52 END_CASE;
 53 END_BODY
 54 END_FUNCTION_BLOCK
 55

The TunableParam variable is declared as
an input to the function block.

29 Plugin Based Targets

29-12

fDefineFBExternal
ConstVariable

Defines
external
variables in
VAR_GLOBAL
CONSTANT.

Target IDE
requires
declaration of
external
constant
variables in
VAR_GLOBAL
CONSTANT.

Generated code with plugin disabled:
VAR_GLOBAL CONSTANT
 SS_INITIALIZE: SINT := 0;
 K3: LREAL := 0.3;
 SS_STEP: SINT := 1;
END_VAR

Generated code with plugin enabled:
VAR_GLOBAL CONSTANT
 K3: REAL := 0.3;

fDefineFBExternal
Variable

Defines
external
constants in
VAR_EXTERN
AL.

Target IDE
requires
declaration of
external
constants in
VAR_EXTERN
AL.

Generated code with plugin disabled:
VAR
 UnitDelay_DSTATE: LREAL;
 i0_ExternallyDefinedBlock: ExternallyDefinedBlock;
END_VAR

Generated code with plugin enabled:
VAR_EXTERNAL
 K1: REAL;
END_VAR

fReplaceShiftFunc
tions

Replaces
target IDE
shift functions
with functions
to match
Simulink shift
function
behavior.

When the
number of
shifts is
greater than
the length of
the data type,
there is a
mismatch
between
output of
Simulink shift
block and
target IDE
shift block.
Use this
plugin to
replace target
IDE shift
blocks with
Simulink shift
blocks in the
generated
code.

Generated code with plugin disabled:
Out10 := WORD_TO_INT(SHL(IN:=INT_TO_WORD(In1),...
 N:=Out2_tmp));

The generated code uses the target IDE SHL
shift function.

Generated code with plugin enabled:
Out10 := WORD_TO_INT(PLC_SHL(INT_TO_WORD(In1),...
 DINT_TO_USINT(Out2_tmp)));
FUNCTION PLC_SHL: WORD
VAR_INPUT
 in1: WORD;
 in2: USINT;
END_VAR
'ST'
BODY
IF in2 > 16 THEN
 PLC_SHL := 16#0;
ELSE
 PLC_SHL := SHL(in1, in2);
END_IF;
END_BODY
END_FUNCTION

The generated code contains the function
PLC_SHL, which replicates the Simulink shift
block in the target IDE.

Plugins for Intrinsic Transformation Functions

Plugin Name Plugin
Purpose

When to Use
Plugin

Effect of Plugin on Generated Code

 Create Custom Target IDE for Code Generation

29-13

fSimplifyAllIntri
nsicFcn

Simplifies the
inputs of all
intrinsic
functions.

Target IDE
does not
allow
compound
expressions
as a part of
intrinsic
function
arguments.

Generated code with plugin disabled:
a := SQRT(x*y);

Generated code with plugin enabled:
t1 := x*y;
a := SQRT(t1);

fSimplifyIntrinsi
cFcn

Simplifies
intrinsic
functions that
are
arguments of
fSimplifyI
ntrinsicFc
nNameList.

Target IDE
does not
allow
compound
expressions
as a part of
intrinsic
function
arguments.

Generated code with plugin disabled:
a := SQRT(x*y);

Generated code with plugin enabled:
cfg.fSimplifyIntrinsicFcnNameList = { 'SQRT' \}
cfg.fSimplifyIntrinsicFcn = true;
t1 := x*y;
a := SQRT(t1);

fSimplifyIntrinsi
cFcnNameList

Creates a list
of intrinsic
functions.
Inputs to
these intrinsic
functions are
simplified by
using
fSimplifyI
ntrinsicFc
n.

Target IDE
does not
allow
compound
expressions
as a part of
intrinsic
function
arguments.

Generated code with plugin disabled:
a := SQRT(x*y);

Generated code with plugin enabled:
cfg.fSimplifyIntrinsicFcnNameList = { 'SQRT' \}
cfg.fSimplifyIntrinsicFcn = true;
t1 := x*y;
a := SQRT(t1);

fSimplifyOperator Simplifies
inputs of
operator
functions
listed by
using
fSimplifyO
peratorNam
eList.

Target IDE
does not
allow
compound
expressions
as a part of
operator
function
arguments.

Generated code with plugin disabled:
a := SHL(x*y);

Generated code with plugin enabled:
cfg.fSimplifyOperatorNameList = { 'SHL' \}
cfg.fSimplifyOperator = true;
t1 := x*y;
a := SHL(t1);

fSimplifyOperator
NameList

Creates a list
of operator
functions.
Inputs to
these
operator
functions are
simplified by
using
fSimplifyO
perator.

Target IDE
does not
allow
compound
expressions
as a part of
operator
function
arguments.

Generated code with plugin disabled:
a := SHL(x*y);

Generated code with plugin enabled:
cfg.fSimplifyOperatorNameList = { 'SHL' \}
cfg.fSimplifyOperator = true;
t1 := x*y;
a := SHL(t1);

29 Plugin Based Targets

29-14

fSimplifyTrunc Simplifies
inputs of the
TRUNC
function.

Target IDE
does not
allow
compound
expressions
as arguments
for the TRUNC
function.

Generated code with plugin disabled:
a := TRUNC(x*y);

Generated code with plugin enabled:
cfg.fSimplifyTrunc = true;
t1 := x*y;
a := SHL(t1);

Generate Code by Using Plugin-Based Target IDE
This example shows how to generate code for a custom target IDE called my PLCopen XMLby using
plugins.

1 Create a folder called myplcopen. Create a plc_custom_ide.m file in the folder by using this
template:
function plc_ide_list = plc_custom_ide
% Copyright 2012-2021 The MathWorks, Inc.
 plc_ide_list(1) = get_ide_info_myplcopen;
end

function ide_info = get_ide_info_myplcopen
 ide_info.name = 'myplcopen';
 ide_info.description = 'My PLCopen XML';
 ide_info.path = ''; % IDE path
 ide_info.format = 'xml'; % generic|xml
 ide_info.fileExtension = 'xml';
 ide_info.cfg = get_ide_cfg_myplcopen;
 ide_info.precg_callback = 'plc_precg_callback_myplcopen';
 ide_info.postcg_callback = 'plc_postcg_callback_myplcopen';
 ide_info.xmltree_callback = PLCCoder.PLCCGMgr.PLC_PLUGIN_CG_CALLBACK_EMPTY;
 ide_info.pluginVersion = 2.2;
 ide_info.compatibleBuildVersion = 1.6;
end

function cfg = get_ide_cfg_myplcopen
 cfg.fConvertDoubleToSingle = true;
 cfg.fConvertNamedConstantToInteger = true;
 cfg.fConvertEnumToInteger = true;
 cfg.fConvertOutputInitValueToAssignment = true;
 cfg.fConvertTunableParamToInputVariable = true;
 cfg.fSimplifyFunctionCallExpr = true;
 cfg.fConvertOutputInitValueToAssignment = true;
end

Set your plugin options in the function_cfg section of the file. To enable the plugin set the
plugin option to true. For example,cfg.fArrayInitialValueBrackets = true; enables
the plugin. To disable the plugin, set the plugin option to false.

2 Create plc_precg_callback_IDEname.m and plc_postcg_callback_IDEname.m files by
using these templates:

function controller = plc_precg_callback_myplcopen(controller)
% Copyright 2012-2020 The MathWorks, Inc.

 % do modifications to the controller struct here, f.ex.:
 for i = 1:length(controller.components)
 controller.components(i).body = sprintf('<<header_placeholder>>\r\n%s',controller.components(i).body);
 end

end

function generatedFiles = plc_postcg_callback_myplcopen(fileNames)
% Copyright 2012-2020 The MathWorks, Inc.

 fileName = fileNames{1};
 str = fileread(fileName);

 Create Custom Target IDE for Code Generation

29-15

% do modifications to str here, f.ex.:
% str = regexprep(str,'BOOL_TO_LREAL','BOOL_TO_INT');
% str = regexprep(str,'<USINT/>','<INT/>');
% str = regexprep(str, 'END_STRUCT','END_STRUCT;');

 [sHeader,eHeader] = regexp(str,'\(*.*?*\)');
 header = str(sHeader:eHeader);

 str = regexprep(str,'<<header_placeholder>>',header);

 sfprivate ('str2file', str, fileName);
 generatedFiles = {fileName};
end

3 Create a plc_header_hook.m file by using this template:
function headerCommentText = plc_header_hook(filePath, blockH, headerCommentText)

headerCommentText = [headerCommentText(1:end-7) ...
 sprintf([' * Plugin Header Copy : Yes \n']) ...
 headerCommentText(end-6:end)];

end

The plc_header_hook.m file copies the header information at the beginning of the generated
code file to every function block instance.

4 Add the new folder and files to the MATLAB path.

• Right-click the folder and select Add to Path > Selected Folders and Subfolders.
• Use the addpath function. For example, addpath(genpath('path to your folder')).

5 Run this command:

plccoderpref('plctargetidepaths','default')

Restart your MATLAB session.
6 Open your model and select the model component for code generation. Open the PLC Coder

app. Click Settings. On the PLC Code Generation pane, in Target IDE, select My PLCopen
XML. Click OK.

29 Plugin Based Targets

29-16

7 In the PLC Coder app, PLC Code tab, click Generate PLC Code to generate code for your
custom target IDE. The generated code files are placed in the path specified in ide_info.path
= ''; % IDE path.

See Also

More About
• “Import and Verify Structured Text Code” on page 4-4

 Create Custom Target IDE for Code Generation

29-17

	Getting Started
	Simulink PLC Coder Product Description
	Prepare Model for Structured Text Generation
	Tasking Mode
	Solvers
	Configuring Simulink Models for Structured Text Code Generation
	Check System Compatibility for Structured Text Code Generation

	Generate and Examine Structured Text Code
	Generate Structured Text from the Model Window
	Generate Structured Text with the MATLAB Interface
	View Generated Code

	Propagate Block Descriptions to Code Comments
	Files Generated by Simulink PLC Coder
	Specify Custom Names for Generated Files
	Import Structured Text Code Automatically
	PLC IDEs for Importing Code Automatically
	Generate and Automatically Import Structured Text Code
	Troubleshoot Automatic Import Issues

	Author, Manage, and Execute Simulation-Based Tests of Generated Code
	Limitations

	Simulation and Code Generation of Motion Instructions
	Workflow for Using Motion Instructions in Model
	Simulation of the Motion API Model
	Structured Text Code Generation
	Adding Support for Other Motion Instructions

	Mapping Simulink Semantics to Structured Text
	Generated Code Structure for Simple Simulink Subsystems
	Generated Code Structure for Reusable Subsystems
	Generated Code Structure for Triggered Subsystems
	Generated Code Structure for Stateflow Charts
	Stateflow Chart with Event Based Transitions
	Stateflow Chart with Absolute Time Temporal Logic

	Generated Code Structure for MATLAB Function Block
	Generated Code Structure for Multirate Models
	Generated Code Structure for Subsystem Mask Parameters
	Global Tunable Parameter Initialization for PC WORX
	Considerations for Nonintrinsic Math Functions

	Generating Ladder Diagram
	Simulink PLC Coder Ladder Diagram Code Generation
	Ladder Diagram Generation Workflow

	Prepare Chart for Simulink PLC Coder Ladder Diagram Code Generation
	Design PLC Application with Stateflow
	Create Test Harness for Chart

	Generate Simulink PLC Coder Ladder Diagram Code from Stateflow Chart
	Stateflow Chart and Ladder Logic Diagram
	Generate Ladder Diagram from Chart
	Generate Ladder Diagram Along with Test Bench

	Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram
	Import Ladder Diagram XML
	Verify Ladder Diagram with Test Bench

	Restrictions on Stateflow Chart for Ladder Diagram Generation
	Supported Features in Ladder Diagram
	Supported Ladder Elements

	Import L5X Ladder Files into Simulink
	Description of the Ladder Diagram
	Import Ladder Diagram

	Modeling and Simulation of Ladder Diagrams in Simulink
	Model an AOI Prescan Routine
	Ladder Model Simulation

	Generating Ladder Diagram Code from Simulink
	Generating C Code from Simulink Ladder
	Verify Generated Ladder Diagram Code
	Simulink PLC Coder Workflow vs. Rockwell Automation RSLogix IDE Workflow
	Create Custom Instruction in PLC Ladder Diagram Models
	Create User-Defined Instruction
	Calculate Square Root by using Custom Instruction Block

	Generating Test Bench Code
	Test Bench Verification
	Integrate Generated Code with Custom Code
	Import and Verify Structured Text Code
	Generate, Import, and Verify Structured Text
	Troubleshooting: Long Test Bench Code Generation Time

	Generate Code That Has Multiple Test Benches
	Troubleshooting: Test Data Exceeds Target Data Size
	Limitations

	Code Generation Reports
	Information in Code Generation Reports
	Create Code Generation Report
	Generate a Traceability Report
	Limitation

	Model Web View in Code Generation Report
	Model Web Views
	Browser Requirements for Web Views
	Generate HTML Code Generation Report with Model Web View
	Model Web View Limitations

	Generate Static Code Metrics Report
	Working with the Static Code Metrics Report
	Workflow for Static Code Metrics Report
	Report Contents
	Function Block Information

	View Requirements Links from Generated Code

	Code Traceability
	Verify Generated Code by Using Code Tracing
	Traceable Elements
	Traceability in Generated Code
	Traceability Tags
	Operator Traceability
	Generate a Traceability Report from the Command Line
	Traceability Limitations

	Trace Simulink Model Elements in Generated Code
	Code-To-Model Traceability
	Model-to-Code Traceability

	Trace Stateflow Elements in Generated Code
	Inline Traceability for Stateflow Elements
	Trace States and Transitions to Code

	Working with Tunable Parameters in the Simulink PLC Coder Environment
	Block Parameters in Generated Code
	Control Appearance of Block Parameters in Generated Code
	Configure Tunable Parameters with Simulink.Parameter Objects
	Make Parameters Tunable Using Configuration Parameters Dialog Box

	Controlling Generated Code Partitions
	Generate Global Variables from Signals in Model
	Control Code Partitions for Subsystem Block
	Control Code Partitions Using Subsystem Block Parameters
	One Function Block for Atomic Subsystems
	One Function Block for Virtual Subsystems
	Multiple Function Blocks for Nonvirtual Subsystems

	Control Code Partitions for MATLAB Functions in Stateflow Charts

	Integrating Externally Defined Identifiers
	Integrate Externally Defined Identifiers
	Integrate Custom Function Block in Generated Code

	IDE-Specific Considerations
	Integrate Generated Code with Siemens IDE Project
	Integrate Generated Code with Siemens SIMATIC STEP 7 Projects
	Integrate Generated Code with Siemens TIA Portal Projects

	Use Internal Signals for Debugging in RSLogix 5000 IDE
	Rockwell Automation RSLogix Requirements
	Add-On Instruction and Function Blocks
	Double-Precision Data Types
	Unsigned Integer Data Types
	Unsigned Fixed-Point Data Types
	Enumerated Data Types
	Reserved Keywords
	Rockwell Automation IDE selection

	Siemens IDE Requirements
	Target PLCs and Supported Data Types
	Double-Precision Floating-Point Data Types
	int8 Data Type and Unsigned Integer Types
	Unsigned Fixed-Point Data Types
	Enumerated Data Types

	Selectron CAP1131 IDE Requirements
	Double-Precision Floating-Point Data Types
	Enumerated Data Types

	Supported Simulink and Stateflow Blocks
	Supported Blocks
	View Supported Blocks Library
	Supported Simulink Blocks
	Supported Stateflow Blocks
	Blocks with Restricted Support

	Limitations
	Structured Text Code Generation Limitations
	General Limitations
	Restrictions
	Negative Zero
	Divide by Zero
	Fixed-Point Data Type Multiword Operations
	Inplace Variables Code Generation

	Ladder Logic Code Generation Limitations
	plcladderlib Limitations
	Ladder Diagram Import Limitations
	Ladder Diagram Modeling and Simulation Limitations
	Ladder Diagram Code Generation Limitations
	Ladder Diagram Verification Limitations

	Configuration Parameters for Simulink PLC Coder Models
	PLC Coder: General
	PLC Coder: General Tab Overview
	Target IDE
	Show Full Target List
	Target IDE Path
	Code Output Directory
	Generate Testbench for Subsystem
	Include Testbench Diagnostic Code
	Generate Functions Instead of Function Block
	Allow Functions with Zero Inputs
	Suppress Auto-Generated Data Types
	Emit Data type Worksheet Tags for PCWorx
	Aggressively Inline Structured Text Function Calls
	Signal Builder Block Time Range to Generate Multi Testbench

	PLC Coder: Comments
	Comments Overview
	Include Comments
	Include Block Description
	Simulink Block / Stateflow Object Comments
	Show Eliminated Blocks

	PLC Coder: Optimization
	Optimization Overview
	Default Parameter Behavior
	Signal Storage Reuse
	Remove Code from Floating-Point to Integer Conversions That Wraps Out-Of-Range Values
	Generate Reusable Code
	Inline Named Constants
	Reuse MATLAB Function Block Variables
	Loop Unrolling Threshold

	PLC Coder: Identifiers
	Identifiers Overview
	Use Subsystem Instance Name as Function Block Instance Name
	Override Target Default Maximum Identifier Length
	Maximum Identifier Length
	Override Target Default enum Name Behavior
	Generate enum Cast Function
	Use the Same Reserved Names as Simulation Target
	Reserved Names
	Externally Defined Identifiers
	Preserve Alias Type Names for Data Types
	Inline Enum Cast Function

	PLC Coder: Report
	Report Overview
	Generate Traceability Report
	Generate Model Web View
	Open Report Automatically

	PLC Coder:Interface
	Interface Overview
	Generate Logging Code
	Keep Top-Level ssmethod Name the Same as the Non-Top Level Name
	Remove Top-level Subsystem Ssmethod Type
	Remove Initialization Statements for Externally Defined State Variables
	Absolute-Time Temporal Logic

	External Mode
	External Mode Logging
	Generate Structured Text Code That Has Logging Instrumentation
	Visualize and Monitor Logging Data by using Simulation Data Inspector
	Set Up and Download Code to Studio 5000 IDE
	Configure RSLinx OPC Server
	Stream and Display Live Log Data by Using PLC External Mode Commands

	Ladder Diagram Instructions
	Instructions Supported in Ladder Diagram

	Ladder Diagram Blocks
	Ladder Diagram Blocks

	Fixed Point Code Generation
	Block Parameters
	Model Parameters
	Limitations

	Generating PLC Code for Multirate Models
	Multirate Model Requirements for PLC Code Generation
	Model Configuration Parameters
	Limitations

	Generating PLC Code for MATLAB Function Block
	Configuring the rand function for PLC Code generation
	Width block requirements for PLC Code generation
	Workspace Parameter Data Type Limitations
	Limitations

	Model Architecture and Design
	Fixed Point Simulink PLC Coder Structured Text Code Generation
	Block Parameters
	Model Parameters
	Limitations

	Generating Simulink PLC Coder Structured Text Code For Multirate Models
	Multirate Model Requirements for PLC Code Generation

	MATLAB Function Block Simulink PLC Coder Structured Text Code Generation
	Configuring the rand function for PLC Code Generation
	SimulinkWidth Block Requirements for PLC Code generation
	Workspace Parameter Data Type Limitations
	Limitations

	PLC Coder Code Deployment
	Deploy Structured Text
	Learning Objectives
	Prerequisites
	Workflow
	Importing Generated Structured Text Code Manually

	Deploy Ladder Diagram
	Learning Objectives
	Prerequisites
	Workflow
	Importing Generated Ladder Diagram Code Manually

	Simulink PLC Coder Structured Text Code Generation For Simulink Data Dictionary (SLDD)
	Structured Text Code Generation Support for Simulink Data Dictionary
	Limitations

	Generate Structured Text Code For Simulink Data Dictionary Defined Model Parameters
	Learning Objectives
	Requirements
	Workflow

	Simulink PLC Coder Structured Text Code Generation For Enumerated Data Type
	Structured Text Code Generation for Enum To Integer Conversion
	IDE Limitations

	Distributed Code Generation with Simulink PLC Coder
	Distributed Model Code Generation Options
	Generated Code Structure for PLC_RemoveSSStep
	Generated Code Structure for PLC_PreventExternalVarInitialization
	PLC_RemoveSSStep for Distributed Code Generation
	Structured Text Code Generation for Subsystem Reference Blocks
	Distributed Code Generation Limitations

	Examples Book
	Generate Structured Text Code for a Simple Simulink® Subsystem
	Generating Structured Text for a Simple Simulink® Subsystem without Internal State
	Generating Structured Text for a Hierarchical Simulink® Subsystem with Virtual Subsystems
	Generating Structured Text for a Hierarchical Simulink® Subsystem
	Generating Structured Text for a Reusable Simulink® Subsystem
	Generating Structured Text for a Simple Simulink® Subsystem Using Multirate
	Simulate and Generate Structured Text Code for a Stateflow® Chart
	Generating Structured Text for a MATLAB® Block
	Generating Structured Text for a Feedforward PID Controller
	Mapping Tunable Parameters to Structured Text
	Simulation and Code Generation For Tunable Parameters
	Simulate and Generate Code for Speed Cruise Control System
	Variable Step Speed Cruise Control System
	Simulate and Generate Code for Airport Conveyor Belt Control System
	Generating Structured Text for Simulink® Model with Fixed-Point Data Types
	Generating Structured Text for Stateflow® Chart with Absolute Time Temporal Logic
	Integrating User Defined Function Blocks, Data Types, and Global Variables into Generated Structured Text
	Simulating and Generating Structured Text Code for Rockwell Motion Instructions
	Tank Control Simulation and Code Generation by Using Ladder Logic
	Using Timers in Ladder Logic
	Temperature Control Simulation and Code Generation Using Ladder Logic
	Elevator Control Simulation and Code Generation Using Ladder Logic
	Structured Text Code Generation for Simulink Data Dictionary
	Structured Text Code Generation for Subsystem Reference Blocks
	PLC_RemoveSSStep for Distributed Code Generation
	Structured Text Code Generation for Enum To Integer Conversion
	Structured Text Code Generation for Integer To Enum Conversion
	PLC_PreventExternalVarInitialization for Distributed Code Generation
	Simulation and Structured Text Generation For MPC Controller Block
	View Requirement Links from Generated Code
	Run-Time Data Collection by Using External Mode Logging
	Verify Generated Code by Using Cosimulation

	PLC Coder Model Advisor
	PLC Coder Checks in Model Advisor Overview
	Industry standard checks overview
	Define names to avoid
	Description
	Results and Recommended Actions

	Define use of case (capitals)
	Description
	Input Parameters
	Results and Recommended Actions

	Define maximum variable name length
	Description
	Input Parameters
	Results and Recommended Actions

	Comments must describe purpose of component
	Description
	Results and Recommended Actions

	Avoid nested comments
	Description
	Results and Recommended Actions

	Define maximum number of input/output/in-out variables of a Program Organization Unit (POU)
	Description
	Input Parameters
	Results and Recommended Actions

	Define type prefixes for variables (if used)
	Description
	Results and Recommended Actions

	Using the PLC Coder Model Advisor
	Run Simulink PLC Coder Model Advisor Checks
	Open the Model Advisor
	Run Checks in the Model Advisor
	Display Check Results in the Model Advisor Report
	Fix Warnings or Failures
	Save and Restore Model Advisor State

	Custom Keyword List
	Create Custom Target-Based Keyword List
	Custom Keyword File Template
	Custom Keyword File Usage Workflow
	Verify Custom Keyword Name Changes in the Generated Code

	Plugin Based Targets
	Create Custom Target IDE for Code Generation
	Plugin-Based Code Generation Workflow
	Plugin Options
	Generate Code by Using Plugin-Based Target IDE

